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ABSTRACT

The large-scale wind energy industry is relatively new and is rapidly dixygan
The ability of a wind turbine to extract power from the wind is expressed with ther pow
curve. The key parameter determining wind turbine performance is wind speedsand it i
normally measured by an anemometer placed at the nacelle of a turbine.

The dynamic nature of wind is a barrier that calls for applying predicti
engineering. Traditional approaches based on physics and mathematicahgnackehot
fully handle the variable nature of the wind.

Data mining is a promising approach for modeling in wind energy, including
power prediction and optimization, wind speed forecasting, power curve monitoring, and
fault diagnosis. It involves a number of steps including data pre-processig, dat
sampling, feature selection, and dimensionality reduction. This Thesis faruses
applying data-mining to predictive engineering in wind industry. Models faligiren of
wind speed and wind farm power, turbine, and fault diagnosis are built. However, the
approach and methods discussed in this research are also applicable to oth&d industr
processes.

Chapter 2 introduces a methodology for short-term wind speed prediction based
on wind farm data. Chapter 3 and Chapter 4 present prediction models for wind turbine
parameters. Chapter 5 proposes strategies for dynamic control of wind su@inagter

6 explores the fault diagnosis and prediction using SCADA data.
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CHAPTERLI.
INTRODUCTION

Generating electricity from the wind is environmentally friendbocially
acceptable, and economically competitive [1]. Wind power has becomd@othmant
source of alternative energy [2] and experienced a dynamictlgiowthe recent years
[3]. However, the operations and maintenance costs [4, 5] havedceedt@rier to an
even more rapid expansion, which aims at a twenty-fold increadse imvihd energy
production by the year 2030 [3]. The fact that wind energy is comsidas most
preferred alternative energy source by many researchasdiasmted further growth of

wind farms and research in wind energy.

1.1 Review of the Methodologies for Wind Speed

Forecasting

The power extracted from the wind is expressed by (1.1) [6]:

1
P ==p7zR*C (1, 8)V
A= 5P > (4, B) 1.1)

where pis the density of air [kg/f, 7R® is the swept area of rotor fin
C,(4,p)is the power coefficient, and is the wind speed. Wind speed is the key
parameter in (1.1), however, by far it is the most difficult pest@r to estimate [1].
Therefore, the need for models for accurate prediction of wind speed is apparent.

A number of approaches have been used to predict wind speed on diffeeent ti
scales needed by different turbine subsystems. The control sgé§tanwind turbine
requires high frequency wind speed data to efficiently extrecehergy from the wind.
Delays associated with getting such data lead to decregsaformance of the turbine
due to delayed controller actions [7-10]. Predicting wind speed on atsherscale is

also important for monitoring wind turbines. A recurrent neural-agtwmodel for
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prediction of wind speed over a two to three day horizon was proposdd ]inThe
numerical weather prediction (NWP) models are commonly used tcakirerind speeds
at hourly or longer basis [1, 12]. The challenges faced by suchlsnatiee to the
stochastic nature of wind, are widely reported in the literature [13].

Data mining is a promising approach for wind speed prediction asdéen
proven to perform well. Models developed with various data mining tgabsihave
been reported in the literature, including linear prediction model$Ugzy logic [1, 14,

15], neural networks [8, 16, 17, 18], and support vector machine models [19, 20]. Yet

another approach for wind speed prediction is based on time-series models [21, 13].

1.2 Review of the Methodologies for Power Prediction and

Optimization

Knowing the power to be produced by a wind turbine at future time hongarfs
interest to the rapidly expanding wind industry [22]. Wind power fotscai® used as
input for various tools e.g., management of power dispatch and contsahaturbines
[23]. Wind power generation depends on wind speed, which however, might b#achpa
by the terrain orography. Wind speed exhibits randomness leading tdiat@bility and
variability of the wind power generation, both becoming challengedfeby power
system operators [24].

Various approaches have been studied to address prediction of poweredratiuc
short- and long-term horizons. The state-of-the-art approaches tquauvet forecasting
have been published in [25] with the more recent updates included in [@8gldused
for forecasting wind power are categorized as: physicdbaeelels, statistical models,
and spatial correlation models [24, 27-30]. Data-mining algorithnes affpromise to
conquer the unresolved gap of handling the dynamic nature of wind [13].

The published literature on data-mining in wind power is growing, Wehral

Networks (NNs) becoming widely used algorithms. NN algorithms lba used to
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estimate power output as a function of wind turbine parameters (@ speed,
generator torque) and time delay of the corresponding parameters (e.g.itpelyavind
speed) [31, 32]. Wind speed, relative humidity, and time were use@utsvariables to
train a NN model in power prediction applications [2, 33]. The reocarmultilayer-
perception NN was applied for power prediction in [34]. Long- and skort-prediction
of power using thek-nearest neighbork{NN) algorithm was presented in [13, 31].
Analysis and estimation of power based on cluster analysis was reported in [35, 36].
Most literature on wind turbine control has focused on maximizing pfave43]

in the cut-in and the cut-out rage of wind speed. This goal is ysaalliieved by
controlling the generator torque so that the rotor speed producingptimum power
coefficient is attained. The wind power is maximized predominantign the wind
speed is below its rated value and the blade pitch angle is Besitdes the traditional
control strategies (i.e., mainly feedback and adaptive-tradiasgd), predictive control
[43, 44, 7] has been used to optimize the capture of the wind power. Thé mode
predictive control approach with blade pitch and generator torgtwecasontrol inputs
was discussed in [44]. The research reported in [43] and [44based on simulated
wind speeds in a reactive rather than predictive mode. Unlike itrzalit energy
conversion systems, where the fuel input can be controlled, the spiedvahd cannot
be controlled. However, knowing the wind speed ahead of time is usefoihirolling a
wind turbine. Wind speed prediction was considered in [7], where a hwiedr speed
time series model was applied to determine wind speed in a shertibrizon (i.e.,
seconds). The wind turbine power output was assumed to be a linear fuficherwind
speed [7]. Thus, knowing the wind speed ahead of time would lead to smoath pow

generation.

1.3 Review of Methodologies for Fault Diagnosis
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The growth of wind power has increased interest in the opesatand
maintenance of wind turbines. As wind turbines are located at réauations that may
be difficult to access, their maintenance becomes an issuadiated in [4], a $5,000
replacement of a bearing can turn into a $250,000 project involving @ades service
crew in addition to the loss of power generation. For a turbine2@ityears of operating
life, the operations, maintenance, and part replacement cagt®stenated in the past to
be at least 10%-15% of the total income from the generationTu)s, condition
monitoring and fault diagnosis of wind turbines are of high priority.

The state-of-the-art research in wind turbine condition monitorirg) fanlt
diagnosis has been covered in the past literature [47-51] witle mement updates
included in [52, 53]. Modern wind turbines are usually equipped with some d&br
condition monitoring systems, including system-level or subsysterh{ivé detection.
Subsystem-level fault detection systems are usually based orornmapjtarameters such
as the vibration of the wind turbine drive train [54], bearing tentpexaoil particulate
content, optical strain measurements [55], and so on. Some comryegsiallable
solutions include blade monitoring systems [56], Supervisory Control and Dat
Acquisition (SCADA) interpretation systems [57], and holistic #led58]. The system-
level condition monitoring and fault diagnosis offer a challenge ttsatdshto numerous
modeling and solution approaches presented in the literature, inclugiing\ets [59],
physics-based models [60, 61], multi-agent framework for faultctlete [62], and

sensor-based network [63].

1.4 Predictive Engineering under Framework of Data

Mining

Data mining is a promising approach for modeling wind energy, e.g.,rpowe

prediction and optimization, wind speed forecasting, and power curveamogit It
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involves a number of steps including data pre-processing, data isgmfdature
selection, and dimension reduction. Based on the ideas discusesl timesis, a data-
driven approach is applied to build wind farm power prediction and wind speed
forecasting models, and realize control optimization strategyd@&sgsfault diagnosis is
explored at system level of wind turbine. Data mining and computatitelligence

technique are employed in this research.

Predictive Engineering

Short Term Wind Power Prediction Fault Diaenosis
Speed Prediction and Optimization &
Chapter 2 Chapter 6
Short Term Short Term )
.. Power Dynamic
Prediction s
. Prediction Control of
on Virtual .
R based on Wind
Turbine . ;
Clustering Turbine
Parameters
Approach
Chapter 3 Chapter 4 Chapter 5

Figure 1. 1 Master Thesis Structure.

Figure 1.1 illustrates the structure of the thesis. Various matang algorithms
for regression modeling are used in Chapter 2 through Chapter 6.

In Chapter 2, a method for prediction of wind speed at a selectetiobaised
on the data collected at neighborhood locations with wind conditions imnfgdsd@he

affinity of wind speeds measured at different locations is defyd@earson’s correlation
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coefficient. Five turbines with similar wind conditions are sild among thirty wind
turbines for in-depth analysis. The wind data from these turbinese to predict wind
speed at a selected location. A neural network ensemble igaipeedict the value of
wind speed at the turbine of interest. The models have been aestéldde computational
results are discussed. The results demonstrate that highesoiPgaicorrelation
coefficient between the wind speed lead to better prediction agciataa same training
and test scenario.

In Chapter 3, a data-driven methodology for the development of vimodéls of
a wind turbine is presented. To demonstrate the proposed methodologaramoeters
of the wind turbine have been selected for modeling, power output and rotol spe
virtual model for each of the two parameters is developed and tegte data collected
at a wind farm. Both models consider controllable and non-controllatdenpters of the
wind turbine, as well as the delay effect of wind speed and p#rameters. To mitigate
data bias of each virtual model and ensure its robustness, a tisehiisgassembled from
ten randomly selected turbines. The performance of a virtual notebely determined
by the input parameters selected and the data-mining algoriteet to extract the
model. Several data-mining algorithms for parameter selectiomande! extraction are
analyzed. The research presented in the paragraph is illdstrate computational
results.

In Chapter 4, a clustering approach is presented for short-ternctpyedof
power produced by a wind turbine at low wind speeds. Increased predictioracy of
wind power to be produced at future time periods is often bounded hyretestion
model complexity and computational time involved. In this paragraplrade-off
between the two confecting objectives is addressed. First, a sbe ghost relevant
parameters (predictors) is selected using the underlyinggshged pattern immersed in
data. Five scenarios of the input space are analyzed with theaks clustering

algorithm. The most promising clustering scenario is applied to pradouedel for each
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clustered subspace. Computational results are compared and thesbeheliister—

specific (customized) models are discussed. The results shotdhaediction accuracy
is improved using fewer parameters provided the input space is prahestered and
customized prediction models are developed.

Chapter 5 presents an intelligent wind turbine control systemdbas models
integrating the following three approaches: data mining, modeligbres control, and
evolutionary computation. To enhance the control strategy of the getdlisystem, a
multi-objective model is proposed. The model involves five differentctibgs with
different weights controlling the wind turbine performance. Thesights are adjusted in
response to the variable wind conditions and operational requiremdmése ¢ontrol
factors, wind speed, turbulence intensity, and electricity demandossidered in eight
computational scenarios. The performance of each scenario tgtaswith numerical
results.

Chapter 6 explores fault data provided by the supervisory control aad da
acquisition system and offers fault prediction at three levédls:fqult and no-fault
prediction; (2) fault category (severity); and (3) the speddidt prediction. For each
level, the emerging faults are predicted 5 to 60 minutes befoyeotioair. Various data-
mining algorithms have been applied to developed models predictingolpofailts.
Computational results validating the models are provided. The raskaitations are

discussed.
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CHAPTER 2.
PREDICTIVE ENGINEERING MODELS FOR SHORT TERM
PREDICTION OF WIND SPEED

2.1 Introduction

A methodology for prediction of wind speed at ten second intervals is gapos
The affinity of wind speeds collected at different wind turbingesdefined by the
Pearson’s correlation coefficient. The data from wind turbineth wimilar wind
conditions is used to predict wind speed for a turbine of intereste Tingels are
proposed in this paragraph: single-predictor model, multi-predictor madel, the
predictor-transformed model. The impact of wind speed measurements on tlewaotur
the predicted wind speed is studied. In cases the number of inputsxeessiee, a
dimensionality approach was attempted. The predictive modebxaexted with neural
network ensembles for two training and test scenarios with eadarst including 10
experiments. That is, two training and test scenarios are cethpar each of the 10

experiments in this paragraph.

2.2 Data Description and Methodology for Prediction of

Wind Speed

2.2.1 Data Description

The ten second data used in this research was collectedhirynatind turbines

at two different time periods. The first period covers seven oapsigust of 2007 and

the second period covers the same length horizon in September ofF200&th time
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periods, 60481 instances were collected at each turbine. The descriptiendata used

in this research is provided in Table 2.1.

Table 2.1. Description of the data sets.

Number o
Start Time End Time Time Interval | Data Points for
Each Turbin
Data set 1| 8/8/07 12:00 AM | 8/15/07 12:00 AM 10 second 60481
Data set 2| 9/22/08 12:00 AM| 9/29/08 12:00 AM 10 second 60481

Two data sets provided here imply different wind characters.tins#d 1, 96.75%
of the wind speed values are less than 12.5 m/s, and 88.5% of the power output values are
smaller than 1000 kW (out of 1500 kW). Data set 2 contains 18% of the pa®dl s
values that are larger than 12.5 m/s, and nearly half of the power vabpes are higher
than 1000 kW. Figure 2.1 illustrates the distribution of wind speed for both data sets.

All data used in this paragraph has been collected at 1.5MW tanwitte cut-in-

wind speed of 3.5 m/s, the rated speed of 12.5 m/s, and the cut-out-wind speed is 21 m/s.

2.2.2 Training and Test Data Sets

As shown in Figure 2.1, data set 1 provides a good coverage of wind spéels i
interval [3.5, 12.5] which is the focus in industrial applications. Therefame training
and test scenarios are considered (see Table 2). In the first scedaaba2irom data set
1 is used for model development and the remaining 1/3 data is usstltteetenodel. To
test the robustness of the proposed models, scenario 2 is explorediéenodels are

trained with data set 1 and are tested with data set 2.
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Figure 2.1. Distribution of the wind speed data.

Table 2.2. Training and test scenarios.

Scenari Training Data Test Data

Data set Data set

1 Start Time 8/8/2007 12:00 AM| Start Time 8/13/2007 12:00 AM

End Time 08/12/2007 11:59F End Time 08/14/2007 11:59F
Data set Data set

2 Start Time 8/8/2007 12:00 AM| Start Time 9/22/2008 12:00 AM

End Time 08/14/2007 11:59F | End Time 09/29/2008 11:59F

Note that scenario 1 represents a typical case as data represemtargnand
conditions is used to train and test performance of the models. Scenario 2 represents an
extreme case as training and test data represent different conditionsiueielata
originating at a different year and a month. Using the data from sinmilartorizons is
likely to produce more accurate results. However, the research repotedparagraph
is to demonstrate that the models developed and tested at disparate data sets produce

useful results.
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2.2.3 Wind Speed Similarity Metrics

The similarity of wind speed measured at different wind turbines is used ais a ba
for prediction of the wind speed of interest. Namely, if the wind speeds fromIsevera
different turbines exhibit similar characters during a certain pered, they are used to
build a model predicting wind speed at a turbine of interest. In this paragraptgriPea
correlation coefficient defined in the next section is used to measure syrbketiveen
wind speeds at different locations.

The Pearson product-moment correlation coefficient (usually c&lesatson’s
correlation coefficient), reflecting linear relationship betwesmdom variables, is used
as a measure of correlation. The Pearson’s correlation geefflmetween wind speed of
target turbiney, and predictor turbine is defined in (2.1) [64]:

IV, -nyy ey y-XyEy 2.1)

©(n-Dss, nZyi-Cy)A Ty - y)?

rvl WV

wherev, and v_p are the sample meanspanadv,, § and S,p are the sample standard

deviations ofv, and v_p and the sample numberrns

2.2.4. Wind Speed Prediction

In the section, a single-predictor and a multi-predictor modewiad speed
estimation are discussed.
1. The Single-Predictor Model

The function f 0 estimating wind speed (t) at timet at an interest turbine

estimation(

using the values of a single predictor is defined in (2.2).
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Vi() = FegtmatoV (1), V {1=1),...,v (1= K)) (2.2)

where f g is derived with the data mining algorithms (see Section 5.1),

imatior
estimation
v, (t) is the wind speed of the predictor turbine at time petiadd historical data for
time periodst —1,...t —kat the turbine are used as input variables. The historical values
of the wind speeds, (t)and v, (t) of Eq. (2.2) need to satisfy the threshold inequality

(2.3).

rvt WV, =z rthreshold (23)

p

Equation (2.3) bounds the affinity of wind speed between the interbstdwand
the predictor. The value df,.,q €quals the maximum Pearson’s correlation coefficient
calculated from the training data set.

Based on Eq. (2.2), the model for prediction of wind speed at tbenéuof

interest at timd +1is defined in (2.4).

v, (t+1) = f

estimation

V) D,V (1), ooV (= ket 1) (2.4)

As v, (t+1)is unknown at current timg, the time-series model (2.5) is used to

generate the estimated valyé+1) in (2.5).

Vp(t+l)* = gtimeseriers p(v ;(t)’ ""Vp(t_ m)) (25)
wheremis the number of past time intervals. The model to predict wind Spoeeyl

steps ahead of tintecan be computed from (2.6) that is derived from equations (2.4) and

(2.5).
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Vt(t+ q)* = festimation(v:)(t"' @""7 Vp(t_ ket Q) (26)

wherev, (t+ Q)" is a dynamic-model shown in (2.7).

Vp(t+ q)* = glimeseries(v;(t_l+ Q) """ Vp(t_ mr Q) (27)

2. The Multi-Predictor Model
Function f .0, (O €Stimating wind speeq \ (t) at timet at a turbine of interest

based on data collected at multiple wind turbisedeifined in (2.8).

Vo (0= Frsmaton sV a0V 5 (t= K,V (00 V i (K)o Vi (0, Vy € k) (2.8)

where N is the number of wind turbines used in equation KQ) is the number of past
time periods used for each turbine. Functigp, ..., (9 is built by the data mining
algorithms (see Section 2.3.2). Similarly, the ealwf wind speeds in Eq. (2.8) satisfy

inequality (2.9).

r\4 Von 2 r.threshold (29)

Inequality (2.9) implies that all wind speeds useeet the similarity threshold
laesnoWHICH IS the largest dfl Pearson’s correlation coefficienBased on equation (2.8)
and (2.9), the model for prediction of wind speedthe turbine of interest at time-1 is

defined as

Vo (t+1) = Foggmaton nV o (1 D) 1oV (= K+ DoV, (& 1) .

(2.10)
Voo (t= o +1), Vo (t+ D5,V (= K+ 1)
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The model for wind speed prediction using origif@abt transformed) data is
illustrated in Figure 2.2. It involves multiple nsemements of wind speeds at times
t—ky,....,tfrom four anemometers as inputs to predict the vépded of Turbine 9 at
time t. The wind speed data from Turbine 3, 4, 13, andr2ded the NN model. In case
when the past readings of wind speed from one amatew only are used as one input,

the model becomes a single-predictor model.

Original
Predictor WS9 (1)
Model

(ANN
Ensemble)

Figure 2.2 Multi-predictor wind speed model.

2.3 Industrial Case Study

2.3.1 Similarity between Wind Speeds

1. Similarity between wind speeds

In this paragraph, Turbine 9 is randomly selectedthfthe set of 30 turbines for
prediction of wind speed. The Pearson’s correlatoefficient is computed between
turbine of interest and other twenty nine turbinBse results of a seven day period for

both data sets (see in Table 2.1) are shown ireTaBL
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Table 2.3 Pearson’s correlation coefficient betwteehine of interest
and twenty nine other turbines.

Turbine No. | Data set 1| Data set 2| Turbine No. | Data set 1| Data set 2
1 0.8558 0.8866 16 0.8273 0.8970
2 0.8600 0.8912 17 0.8654 0.9023
3 0.8742 0.8968 18 0.8591 0.8965
4 0.8893 0.8949 19 0.8276 0.8841
5 0.8558 0.8837 20 0.8530 0.8795
6 0.8382 0.8698 21 0.8454 0.8825
7 0.8603 0.8773 22 0.8686 0.8883
8 0.8436 0.8868 23 0.8346 0.8967
9 1.0000 1.0000 24 0.8326 0.8872
10 0.8485 0.8800 25 0.8702 0.8958
11 0.8330 0.8945 26 0.8955 0.8976
12 0.8650 0.8952 27 0.8424 0.8842
13 0.8973 0.9130 28 0.8354 0.8941
14 0.8529 0.8844 29 0.8273 0.8691
15 0.8659 0.8978 30 0.8255 0.8853

Figure 2.3 illustrates the Pearson’s correlatioafftdent between the turbine of

interest and twenty nine remaining turbines. Faladset 1, the Pearson’s correlation

coefficient is in the range [0.82, 0.89], while fdata set 2 the Pearson’s correlation

coefficient is in the range [0.87, 0.91]. The Peais correlation coefficient

corresponding to data set 2 is higher than thdbtd set 1. For both data sets, Turbine 13

shows strongest linear relationship with turbinendérest. Four turbines (Turbine 3, 4,

13, and 26) with the highest correlation coeffitiealues for data set 1 are selected for

further analysis (in the circled area of Figure)2.3
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Figure 2.3 Pearson’s correlation coefficient betw&arbine 9 and 29 other turbines.

2. Correlation Coefficient in Time

To examine the consistency correlation between \spekds at different locations
in different time period, the Pearson’s correlatmefficient of Turbine 9 is examined at
seven separate days for data sets 1 and 2 of Zdble
1) Data set 1

Table 2.4 shows the values of Pearson’s correlat@&fficient for Turbine 9 and
the four selected turbines 3, 4, 13, and 26 frorg.Authrough Aug.15 based on data set
1. The highest value of the correlation coefficisnTable 2.4 is 0.9467 and the lowest
value is 0.4905.

The highest Pearson’s correlation coefficient iarf@Aug. 8, Aug. 11, Aug, 12,
and Aug.14) out of the seven days and the highestge correlation coefficient 0.8186

across the seven days correspond to Turbine 13.
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Table 2.4. Pearson’s correlation coefficient forbime 9 and the four selected turbines
over a seven day period based on data set 1.

Seven

Turbine No. | Aug. 8| Aug. 9| Aug.10| Aug.11 | Aug.12| Aug.13| Aug.14 Day

Average

3 0.8887| 0.8608| 0.7554| 0.9274| 0.8766| 0.4247| 0.8055 | 0.7913

4 0.9019| 0.8218| 0.7772| 0.9397| 0.9180| 0.3460| 0.8271 | 0.7902

13 0.9043| 0.8868| 0.7692| 0.9467 | 0.9268| 0.4905 | 0.8058 | 0.8186

26 0.9071| 0.8984| 0.7766| 0.932 | 0.897 | 0.4568| 0.8296 | 0.8139
Average

Across 0.9005| 0.867 | 0.7696| 0.9365| 0.9046| 0.4295| 0.8170

4 Turbine:

2) Data set 2

For the data set 2 of Table 2.1, the strongesatinglationship (0.9378) between

Turbine 13 and Turbine 9 is on Sept. 14 and the&kestdinear relationship (0.5518) is on
Sept. 25 as shown in bold in Table 2.5.

Table 2.5 Pearson’s correlation coefficient forbine 9 and the four selected turbines
over a seven day period based on data set 2.

Sever

Turbine No. | Sept.22| Sept.23| Sept.24| Sept.25| Sept.26| Sept.27| Sept.28] Day

Average¢

3 0.7601| 0.8336| 0.8922| 0.6395| 0.7365| 0.7696| 0.7839| 0.7736

4 0.7197| 0.8242| 0.9145| 0.5520| 0.7300| 0.8173| 0.8448| 0.7718

13 0.7996 | 0.8389| 0.9378 | 0.5518 | 0.7893| 0.8398| 0.8666| 0.8034

26 0.7715| 0.8159| 0.9344| 0.5733| 0.6934| 0.8095| 0.8187| 0.7738
Average

Across 0.7627| 0.8282| 0.9197| 0.5792| 0.7373| 0.8091| 0.8285

4 Turbine:
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As illustrated in Table 2.4 and Table 2.5, the Beals correlation coefficient
varies on daily basis. Turbine 13 and Turbine 9l@kimost similar wind speeds for both
data sets, i.e., for 10 out of 14 days (4 daysata det 1) and 6 days (all but Sept 25) in
data set 2. The highest average Pearson’s coorelatiefficients (0.8186 for data set 1

and 0.8034 for data set 2) correspond to the samefturbines.

2.3.2 Model Extraction

1. Algorithm Selection

Models derived by various data mining algorithmsutein different accuracy of
predicted wind speeds. To select the most apptepaigorithm, a model is built using
data from Turbine 13 to predict wind speed of Toe®. The training data is made of 10%
randomly selected wind speeds from data set 1lantest data constitutes 5% randomly
selected wind speeds from data set 2 (both fromeTBb Any model built (trained) and
tested using data sets with different charactesgsee Table 1) that performs well must
robust and transferable among different applicationThe performance of models
developed from a subset from data set 1 by thevialg four data mining algorithms:
Random Forest Algorithm (RFA), Multiple Layer Pgrten (MLP) Neural Network
(NN) Ensemble, Support Vector Machine (SVM), and Boosting Tree Algorithm and
tested on a subset from data set 2 of Table ted in Table 2.6.

The best performing algorithm is the Multiple-Layrcepton (MLP) Ensemble,
initiated with thirty neural networks (NNs). Themmum number of units in the hidden
layer of the MLP NN is equals the number of inpaitgmeters and the maximum number
of units in the hidden layer is set as three tirtteg number. The best five neural
networks are used to construct the neural netwosgemble, i.e., for each experiment

0 andf ..o, (O are generated by the neural network ensemble.

festimation(
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Table 2.6. Performance of four data mining algongh
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Observed | Predicted AEAS%?S,[ e Mean
Algorithm Name Average Average Error STD of Relative | STD of
Wind Speed Wind Speed (MAE) MAE Error MRE
[m/s] [m/s] [m/s] (MRE) [%0]
Random Forres
Regressio 8.7524 8.7610 1.0607 | 0.9667 16.0072 | 33.2202
Multiple-Layer
Percepton (Ensemb 8.7524 8.8042 1.0661 | 0.9311 15.1824 | 23.1501
Support Vector Maching  8.7524 8.6201 1.4781 | 1.0000 24.6937 | 30.7573
Boosting Tree 8.7524 8.7667 1.0732 | 0.9436 17.0813 | 38.2927

2. Dimensionality Reduction

In the proposed models (Eqgs (2.2) and (2.8)) onky parameter (wind speed) is

considered as input. The input dimensionality iases with the increase number of past

states of the wind speeds and the number of tuisbiigh dimensional data input imply

expensive computation, and may decrease prediatoaracy. In this paragraph, wind

speeds from multiple turbinebl & 2 to 4) measured up to 12 past states are gsieqat

parameters for model extraction. For example, aahddrived from data of two wind

turbines calls for 26 (= 2 parameter§l2 past states + 1 current state)) inputs; model

based on data from three turbines calls for 39tspand four turbines for 52 inputs. In

some cases, training a model on three-turbine ltegaaken over 24 hours, and for four

turbines more than 48 hours. Therefore, the datesionality reduction is considered.

Principal component analysis (PCA) is an efficieraty for data dimensionality

reduction. It transforms a number of possibly datezl variables into a smaller number

of uncorrelated variables called principal compdseihe first principal component

accounts for as much of the variability in the datapossible, and each succeeding

component accounts for as much of the remainingalidity as possible. For

computational analysis, ten factors are selectédrto training data for each of the three
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cases (with two, three, and four turbines). The eha¢veloped with the PCA derived
inputs is called here the transformed-predictor @h¢gee Figure 2.4).

Figure 2.4 illustrates the transformed-predictodeioData from Turbine 3, 4, 13,
and 26 are transformed by PCA and the first 10ofacare used as inputs to the NN

model.

WS3(1).....WS3(t-kI) __y,

—
P
. § Transformed
WSA().....WSA(-k2)_ I » I Factor] Predictor Ws9 ()
C Model
| 1 AN
WS12(t),...,WSI12(t-k3 A v
© ( )—P I IFaCTOTlO Ensemble)
\J |
WS26(1).....WS26(-k4) __,

Figure 2.4 Transformed-predictor model.

2.3.3 Computational Results

To demonstrate utility of the model proposed irstparagraph, 20 different
experiments have been designed in Table 2.7. pererents 1 through 10 consequent
training and test data subsets originating fromadst 1 are used. The training data
covers the five day period from Aug. 8 to Aug. 48d the test data covers the two day
period Aug. 13 to Aug. 14. In experiments 11 tlglo0, the training and test days
represent different wind regimes. Data set 1 ofl@dbis used to create training data
subsets, while data set 2 is used to test the moddbte that this represents an extreme
situation where the training and test data setgir@ie at disparate data environments
outlined in Table 1. Note that the numbers indblimn Experiment Number of Table

2.7 are used in Table 2.8 and 2.9.
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Table 2.7. Description of twenty computational expents.

Training and Test Scenario 1 Training and Test Scenario 2
1 1 3 No 11 1 3 No
2 1 4 No 12 1 4 No
3 1 13 No 13 1 13 No
4 1 26 No 14 1 26 No
5 2 4&13 No 15 2 4&13 No
6 2 4&13 Yes 16 2 4&13 Yes
7 3 3,4&13 No 17 3 3,4&13 No
8 3 3,4&13 Yes 18 3 3,4&13 Yes
9 4 3,4,13&26| No 19 4 3,4,13&26 | No
10 4 3,4,13&26 | Yes 20 4 3,4,13&26 | Yes

Several metrics are used to measure predictiorracgof the models involved in
20 experiments of Table 2.7, including the Meandhne Error (MAE), Mean Relative
Error (MRE) and Standard Deviation (STD) of MAE aMRE. The Mean Absolute
Error is defined in (2.11).
P ACEC)

MAE = =!baia (2.11)
|Datd|

Here|Data| denotes the number of data points in trainingest tdata sety, (t) is
the predicted wind speed at time t, anf) is the observed wind speed. The Mean

Relative Error is defined in (2.12).

D % O-%O 1000
MRE = leData v () (2 12)
|Data]
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Four analyses are performed next: performance atiaiuof a single-predictor
model, performance evaluation of a multi-predictardel, model accuracy for extended
number of future prediction horizons, and modefgrarance on a daily basis.

1. Performance of the Single-Predictor Model

The data from each of the four turbines 3, 4, 1] 26 (with the highest
Pearson’s correlation coefficient, see Figure B2jsed to form a single-predictor model
(see equation (2.2)). For all the experimentsiighis section, the number of past states
wind speed =12. Experiments 1 through 4 in Table 2.8 represeattthining and test
scenario 1 of Table 2.2, while Experiments 11 tgiod4 in Table 8 present the results
for training scenario 2 of Table 2.2. Note that tbsults in Table 2.8 use all the data in
sets 1 and 2 for the turbines 3, 4, 13, and 26abld 2.2. The experiment number shown

in Table 2.8 is quoted from Table 2.7 where eacpesrent is assigned a specific

number.

Table 2.8 Test performance of single-predictor nederived from four different

turbines.

Pe%rso Observe| Predicte| Mean Mean
Experim Turbine | Correlat dl\/_lean dl\/_lean Absolut sSTD Relative sSTD
ent Number ion Wind Wind e Error of MAE Error of MRE

Number Coeffici Speed | Speed | (MAE) (MRE)

en [m/s] [m/s] [m/s] [%6]
1 3 0.6807 | 8.2418 | 8.1299 | 1.0770 | 0.8766 | 14.0463| 13.5380
2 4 0.6825 | 8.2398 | 8.2423 | 1.0336 | 0.8832 | 13.4101| 13.0629
3 13 0.6917 | 8.2398 | 7.9743 | 1.0374 | 0.9139 | 12.9100 | 11.6481
4 26 0.7126 | 8.2398 | 8.2988 | 1.0467 | 0.8581 | 13.8296| 13.5764
11 3 0.8964 | 8.7043 | 8.2642 | 1.2093 | 1.0207 | 17.2954| 28.9083
12 4 0.8945 | 8.7062 | 8.6064 | 1.1747 | 1.0248 | 17.5526| 35.4587
13 13 0.9126 | 8.7062 | 8.6919 | 1.0878 | 0.9485 | 16.0009 | 27.6607
14 26 0.8972 | 8.7035 | 8.5800 | 1.1413 | 0.9940 | 18.2277| 40.9673
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The results in Table 2.8 demonstrate that for @iming and test scenarios of
Table 2.2, the best performing model is that ofblng 13. It turns out that the wind
speed of Turbine 13 is the most highly correlatedhat Turbine 9 (marked in bold in
Table 2.8).

Figure 2.5 and 2.6 benchmark performance of theetsdolilt and tested in the
eight experiments presented in this section. Iregenthe models tested in experiments 1
through 4 perform better than those of experiménthtough 14, which implies that the

training and test scenario 1 outperform scenanbTable 2.2.

1.30 1.00

‘\—A/‘\A L 0.90

1.20
1.1747
/. I 0.80

MAE [m/s]

¥

Pearson's correlation coefficient

1.00

0.60
1 2 3 4 11 12 13 14

—&— Mean absolute eror —&— Pearson's correlation coefficient

Figure 2.5. MAE and Pearson’s correlation coeffitsefor
the eight experiments of Table 2.8.
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19.5 1.00

18.5

175 ﬁ 0.90
16.5

V 0.80

MRE [%]

15.5

A

14.5 0.70
135 /.
12.9100

12.5 0.60

Pearson's correlation coefficient

1 2 3 4 11 12 13 14

—e&— Mean relative erc.  —A— Pearson's correlation coeffici

Figure 2.6 MRE and Pearson’s correlation coeffitsen
for the eight experiments of Table 2.8.

The data used in experiments 1 to 4 represent tinoom of wind conditions.
Among the first four experiments in Table 2.8, thedel built in experiment 2 has the
lowest MAE and best value of MRE is attained in expent 3. Overall, best
performance among the four experiments is for mofl@xperiment 3, with the MAE
value similar to experiment 2 and better MRE.

The best performing model (lowest values of MAE aWi®E) among the
experiments 11 through 14 (Table 2.8) was derimegkperiment 13. The wind speed in
this data set is most highly correlated to the vépded of Turbine 9.

Overall, performance of all models built and tesiedhe eight experiments of
Table 2.8 is satisfactory. The computational nsssihow that the wind data collected at
neighborhood turbines can be used to predict wieeéd at any turbine. Using data from

a similar wind conditions leads to better predicterformance of wind speed.

2. Performance of the Multi-Predictor Model
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In this section, performance of the multi-predictoodel (see equation (2.8))
tested in six experiments is discussed. The numibeimnd turbinesN varies from 2 to 4.
The number of past states wind speed used fortedsime equals 12. Two training and
test scenarios (see Table 2.2) are applied for eatlof turbines. Performance of the
neural network model built and tested in six expents is illustrated in Table 2.9. The
experiment numbers used in Table 2.9 (the firstiool) are identical to those used in
Table 2.7. The data stream used by each NN modepissented by the turbines listed in

each turbine set (the second column) in Table 2.9.

Table 2.9 Performance of six multi-predictor models

Observec | Predictec kl\)/lealm Mlean
. Mean Mean Absolute Relative
EXI\?E;;@SP Turbine Set Wind Wind Error SI\-/II-/IE\)EOf Error Sl\-/ll-lgEo f
Speed Speed (MAE) (MRE)
[m/s] [m/s] [m/s] [%0]
5 4 &13 8.2398 8.1401 0.9597 0.8387 12.1422 11.3621
7 4,13 & 26 8.2398 8.1835 0.9408 0.8102 12.0076 11.2488
9 3,4,13& 26 8.2418 8.1147 0.9129 0.7812 11.5782 10.6893
15 4813 8.7062 8.7214 1.0578 0.9365 15.1655 26.3199
17 4,13& 26 8.7043 8.7092 1.0161 0.9022 14.8205 26.1021
19 3,4,13&26 8.7043 8.7008 1.0352 6.9128 14.4829 64.8171

In general, performance of the models tested experiments 5, 7 and 9 is better
than those of experiments 15, 17 and 19. This a&teégcthat the training and test scenario
1 provides better accuracy results than scenaoioTable 2.2. Based on scenario 1 data,
the model of experiment 9 (shown in bold in Tabl8)2nvolving four predictors
performs best. The model of experiment 17 is mostiate of all the models in scenario
2. In this scenario, a model using 4 predictorsigied inferior MAE tend to be worse

than the model with 3 predictors (marked in italic3 able 2.9).
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Figure 2.7 compares the test performance of eapbriement listed in Table 2.9.
For the models tested in experiments 5, 7 ande€pthdiction accuracy improved with
increase of number of predictodd While for experiment 15, 17 and 19, the best
performance is for experiment 17 (using three pteds), while in experiment 19, the
MAE decreases when 4 predictors are used. Thisdserin accuracy might due to the

high data dimensionality.

1.10 16.00
15.1655
‘\‘\ L 15.00
1.05 1.3 -
. ?"\/. L 14.00
W 1.00 13.00 w
< 4
s s
11.5782 L 12.00
0.95 LNy
- 11.00
0.9129
0.90 10.00

5 7 9 15 17 19

—e— Mean absolute error —&— Mean relative error

Figure 2.7 MAE/MRE vs the number of predictors.

To reduce dimensionality of the input, the transfed-predictor model (see
Figure 2.4) is proposed. The original wind speed datransformed with the PCA
algorithm in 10 factors that form a new trainingldast data sets. Unfortunately, using
multiple turbines might not show benefits in preitig wind speed if PCA analysis is
used to reduce the dimension of the data. Thusptriagraph does not the report the test
performance using transformed predictor model taitle
3. Prediction Accuracy for Different Time Horizons

To test the consistency with model accuracy widpstahead, Turbine 13 is used

as the predictor. Wind speed prediction of TurldiBas achieved by a dynamic-model of
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Eq. (2.7) fom=12 andg =13. Table 2.10 illustrates the prediction resafta/ind speed

at Turbine 13 at the current timéor 13 future time periods, from+ 1tot +13.

Table 2.10 Prediction of wind speed of Turbine thadrvals t, t +1,.., t +13.

Mean Mean

. Observed | Predicted | Absolute | STD Relative

Tg]]e Mean Wind| Mean Wind Error of Error S,\ISEOf
Speed [m/s] Speed [m/s] (MAE) MAE (MRE)
[m/s] (%]

t 7.952¢ 7.948: 0.520¢ 0.475: 6.945! 7.486:
t+1 7.952¢ 7.935! 0.364¢ 0.344( 4.729( 5.020:
t+2 7.952¢ 7.926" 0.425: 0.384: 5.723( 6.842!
t+3 7.952" 7.917¢ 0.456¢ 0.4157 6.037! 5.876!
t+4 7.952" 7.909: 0.471: 0.428" 6.512: 10.117:
t+5 7.952¢ 7.900¢ 0.492¢ 0.444¢ 6.554" 6.441:
t+6€ 7.952¢ 7.893( 0.530¢ 0.477: 7.051! 6.827"
t+7 7.952¢ 7.884¢ 0.570: 0.511¢ 7.875’ 12.110:
t+ 8 7.952¢ 7.876: 0.603: 0.537( 8.356¢ 13.029:
t+9 7.952¢ 7.867: 0.626: 0.557: 8.408" 8.418¢
t+ 1C 7.952: 7.858¢ 0.647( 0.574¢ 9.053: 15.204t
t+ 11 7.952: 7.850: 0.669¢ 0.591¢ 9.418¢ 16.360!
t+ 12 7.952: 7.841( 0.686¢ 0.607: 9.693¢ 17.377:
t+ 13 7.952: 7.841( 0.700¢ 0.622° 9.931! 18.416¢

The results in Table 2.10 are used in the prediabiowind speed at Turbine 9,

where the predicted wind speed of Turbine 13 isnparated in equation (2.6) to derive

the wind speed of Turbine 9 far=1toq=13.

periods are shown in Table 2.11.

The prediction results of 13 future

As illustrated in Table 2.11, for each step ah@ddE increases less than 0.01

m/s and MRE increases less than 0.1%. The valu&$A&f and MRE are illustrated in

Figure 8. Note that at time perioth-13 all values of the input parameters are generated

by the data-mining algorithms, rather than usivg data measured at wind turbines. The
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accuracy of the results is acceptable up to perieadl13, i.e., 130 seconds which is

acceptable in practice.

Table 2.11 Prediction of wind speed of Turbinet@mvals t, t +1,.., t +13.

b d dicted {\)/l ealm Mlean
. Observe Predicte Absolute | STD | Relative
Tg]m Mean Wind | Mean Wind Error of Error SJSEO]C
Speed [m/s]| Speed [m/s] (MAE) MAE (MRE)
[m/s] [%]

t 8.2398 7.9743 1.0374 | 0.9139| 12.9100 | 11.6481
t+1 8.2397 7.9347 1.0482 | 0.9209| 12.9924 | 11.5431
t+2 8.2396 7.9165 1.0520 | 0.9236| 13.0159 | 11.5285
t+3 8.2396 7.9067 1.0602 | 0.9293| 13.1148 | 11.6352
t+4 8.2395 7.8739 1.0729 | 0.9391| 13.2446 | 11.6892
t+5 8.2394 7.8608 1.0807 | 0.9425| 13.3329 | 11.7514
t+6 8.2393 7.8419 1.0917 | 0.9476| 13.4626 | 11.8093
t+7 8.2393 7.8303 1.1007 | 0.9526| 13.5578 | 11.8762
t+8 8.2392 7.8243 1.1056 | 0.9553| 13.6155 | 11.9323
t+9 8.2392 7.8106 1.1140 | 0.9599| 13.7016 | 11.9490
t+10 8.2391 7.7947 1.1203 | 0.9671| 13.7468 | 11.9613
t+11 8.2390 7.7814 1.1266 | 0.9763| 13.8127 | 12.0208
t+12 8.2390 7.7719 1.1224 | 0.9732| 13.7385 | 11.9500
t+13 8.2389 7.7588 1.1280 | 0.9779| 13.7889 | 11.9885

MAE [m/s]

113

111
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1.05 4

1.03
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12.90

t t+l 42 43 t+4 t45 t+6 t+7 t+8 t+9 t+10 t+11 t+12 t+13

—®— Mean absolute emor —#— Mean relative error

MRE [%]

Figure 2.8 Model accuracy with 13 periods.
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4. Daily Performance Analysis

The data sets from Sept. 24 to Sept. 26 are ugesting. The smallest MAE
corresponds to Sept. 24 and the largest MAE to. 2&piThe difference between the two
values is 0.94 m/s. Note that the observed mead gpeed on Sept. 24 is much lower
than on the other two days. This might be the redsioa lower MAE but a higher MRE
on Sept. 24. Comparing the results for Sept. 25 &apt. 26, the higher Pearson’s

correlation coefficient (Sept. 26) leads to higpexdiction accuracy.

Table 2.12. Daily performance of Turbine 13 fort tdsta set 2 of Table 2.2.

Observec

Mean

: Mean
Pearson’'s | Average Predicted Absolute ;

Date Correlation Wind Average Wind Error SI\-/IF}_\)EOf Rglr?g;/ € Sh;lrgé) f

Coefficient Speed Speed [m/s] (MAE)
(MRE) [%]

[m/s] [m/s]

Sept. 24 0.9378 5.0632 4.8431 0.6957 0.5710 | 28.4732 | 63.8186

Sept. 25 0.5518 10.9253 11.4182 1.6290 1.1796 | 17.1483 | 16.0525

Sept. 26 0.7893 11.4124 11.0768 1.1952 0.8936 | 11.4205 | 11.6497

2.4 Summary

In this section, models for prediction of wind spe# a turbine of interest using
wind speeds from other turbines were presentechdRadhan using the wind speed data
from random turbines, turbines sharing similar wepgkeds were selected. The wind
speed similarity was computed using Pearson’s letiwa coefficient. In the single-
predictor model, wind speed was measured at anrbharing most similar wind
conditions with the turbine of interest was usedpasdictor. In the multi-predictor
models, wind speeds measured at two to four tusbame were used as predictors. To
reduce the input data dimensionality, a prediatangformed model was used. Unlike the
previous two models, in this model wind speeds nreakat two, three, or four turbines

were the PCA technique before becoming the predicto
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The computational analysis demonstrated that thieenithe Pearson’s correlation
coefficient, the higher the prediction accuracy foost experiments. Though the
Pearson’s correlation coefficient varied, the prgdh accuracy remained relatively
stable. The increase in the number of predictossléthto increased prediction accuracy.
However, the increase in the number of predictas Ied to the excessive training time
without accuracy gain. The input dimensionality waduced with the PCA technique,
yet did not offer accuracy benefits often seentirepapplications. All models discussed
in the paragraph used only one parameter (windd3peead therefore they are easy to

apply.
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CHAPTER 3.
SHORT TERM PREDICTION OF WIND TURBINE PARAMETERS

3.1 Introduction

The large-scale wind energy industry is relativetyv and is rapidly expanding
[22]. The ability of a wind turbine to extract powfeom the wind is a function of three
main factors: the measured wind speed, the powegeaf the turbine, and the ability of
the machine to handle wind fluctuations [38]. They kparameter determining wind
turbine performance is wind speed.

Wind speed is normally measured with an anemonmdeed at the nacelle of a
turbine. In some cases, in addition to turbine asresters, meteorological towers are
used to provide additional measurements of win@dpkElowever, these additional wind
speed measurements are not used directly to cantfividual turbines, rather they are
applied for assessment of wind speed.

Considering the fact that wind speeds and windireriperformance vary across
different turbine locations at a wind farm, the sfien arises as to whether a generalized
model (called in this paragraph a virtual model}aofvind turbine could be developed.
Such a virtual model has been developed based gkDAOdata collected at wind
turbines. As a wind turbine is a complex systenp @spects of a wind turbine are
reported in this paragraph, the power output anel mhtor speed. However, the
methodology presented here can be applied to nmgdeiany aspects of a wind turbine.
Predicting the power output demonstrates the chtyabi the virtual model to improve
performance of a wind turbine, while predicting th&or speed points to the utility of the
virtual model to improve the lifetime of turbineroponents, e.g., the gearbox.

The literature on data mining in wind energy hamaprily focused on estimating

and optimizing the power output. A review of theedature on forecasting wind speed
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and generated power using both physical modelglatedmining methods is presented in
[24]. An approach to optimizing power by controfjigenerator torque is discussed in
[38]. Optimization of power output and operatiopatformance is reported in [39, 65].

Model building can be accomplished with a varietyfearning algorithms, e.g.,
neural networks [11, 13]. A neural network was agpin [32] to estimate power output
as a function of the time delay of wind speed dredpower itself. However, none of the
published paragraphs has focused on virtual madgisedict any measurable parameter
of interest, e.g., the power output and the rgbees.

Data mining offers algorithms for finding patterausd relations in extensive data
[38] using machine-learning algorithms. It is wiglebcognized that data preprocessing is
a time-consuming step; for example, 80% of the timelved may be spent on data
sampling, feature selection, and so on [69]. Mesteuth as simple random sampling and
stratified sampling [70] can be used. Feature (patar) selection is also regarded as an
important task in data mining, and some algoritimase been proven to be effective [71,

72] in determining relevant parameters.

3.2 Data Description and Methodoloqgy for Short Term

Prediction of Wind Turbine Parameters

3.2.1 Methodology for Developing Virtual Models
The methodology for developing virtual models tedict interest aspects of wind

turbines includes three phases: data preprocessimaglel extraction, and model

validation (see Figure 3.1).
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Phase 1. Data processing
Step 1: Data ) . X
collection and analysis Step 2: Parameter selection Step 3: Data sampling
Use lO-secoqd data Determine Define Analysis Data
from multiple aspects of St of raw sampling
turbines interests P data ping
Phase 2. Model extraction
. Model construction
£z B e e om I::> Selection and comparison of algorithms
Phase 3. Model evaluation
Step 5: Computational Evaluate model performance with
analysis various data sets

Figure 3.1 Methodology for developing virtual mazlel

The steps of the methodology outlined in FigureaBeldescribed next.

Step 1: Data collection and analysis

First, it is necessary to explore the content & thw data as it is used in
modeling. For example, data formats and frequenegdnto be preprocessed for

uniformity. Any data that is incomplete, in error,missing needs to be dealt with.

Step 2: Feature selection

Feature selection is considered from two perspestidomain knowledge and

data mining. In terms of domain knowledge, all pfagameters of a wind turbine system
can be classified in three categories:

Controllable parameters, e.g., blade pitch angdagrator torque
Non-controllable parameters, e.g., wind speed

[ ]
e Turbine performance parameters, e.g., power outpiar, speed.
Controllable parameters and non-controllable patarseconstitute inputs to the

virtual models, while the performance parameteeater the outputs predicted by the
models.
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The impact of input parameters on the output (perémce) parameter varies.
Some insignificant parameters are easy to elimibased on the domain knowledge. The
impact of input parameters on the performance pet@ms ranked ordered by data-
mining algorithms.

Step 3: Data sampling

Data sampling is a commonly used approach for setea subset of data from a
large volume of data. In this paragraph, data sagps performed according to the
range of wind speed, which is the only non-corditlt parameter available in the data
set. This sampling strategy leads to a data sathpteis representative across different
wind speed ranges.

Step 4: Model extraction

Different data-mining algorithms are used to extrmodels. The model which
performs the best is selected.

Step 5: Computational analysis

In this paragraph, three types of datasets witterdint characteristics are used to

evaluate the performance of the model extracteStbg 4.

3.2.2 Data Collection and Analysis

Wind turbines are equipped with sensors providiragious measurements,
including wind speed, power output, generator tergand so on. Some of these
measurements can be used to control and monitgoetiermance of wind turbines. In
this paragraph, data from 30 turbines generatetDatecond intervals from two time
periods is used. One time period provides datahfgh wind speed, and the other
provides data for low wind speed.

The analysis performed in the research shows tigatlata collected on the same

parameters across different turbines of the samad wiarm exhibit different
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characteristics. To illustrate the data variahilftyur random turbines of the same type
have been selected. Figure 3.2 shows the wind speedied by the Supervisory Control
and Data Acquisition (SCADA) system of these tuesint is clear that the range of wind
speed for turbine 2 is significantly different frdthre other three turbines. The wind speed
of turbine 1, turbine 3, and turbine 4 is highearttthe cut-in speed of 3.5 m/s for this
turbine type. The wind speed of turbine 2 is betbe cut-in speed, which indicates that

this turbine could not produce power, as opposedther three turbines.

o

2
;

§

w
|
|

Wind speed (m/s)

N

i

—+—Turbine 1 Turbine 2 —=—Turbine 3 —=—Turbine 4

Figure 3.2 Comparison of wind speeds of four défewind turbines.

Most turbine sensors provide high frequency measenés that are usually
averaged into higher frequency data, e.g., 10-mimverage data. Some users set the
SCADA system to store higher frequency data, 8.geconds.

Figure 3.2 shows the power curve for the four nebj which not only looks
different from the ideal power curves, but alsovehdistinct characteristics. It is obvious
that the negative power output of turbine 2 indisahat this turbine is consuming (e.g.,
power electronics) rather than producing energye Ppower of the remaining three

turbines differs in ranges and shapes.
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Figure 3.3 Power outputs of four turbines based®minute data.

Figure 3.4 illustrates the power output generatethfl0-second data. Note that
the data used in Figure 3.3 was obtained by avegatlie data used in Figure 3.4.

Although the power ranges of turbine 1, turbinardj turbine 4 differ, they share similar

shapes.
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Wind speed (m/s) + Turbine 1 + Turbine 2 = Turbine 3 x Turbine 4

Figure 3.4 Power outputs of four turbines based®second data.
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To ensure that the behavior of the turbines is aaledy reflected in the model,
the 10-second data is used for analysis. Of thiei®0nes considered in this research, the
data from 10 randomly selected turbines constitatésining set, and the data from all

30 turbines is used to test the proposed methogolog

3.3 Industrial Case Study on Virtual Models fordicéon

of Wind Turbine Parameters

3.3.1 Parameter Selection

The data provided from the SCADA system spans d¥¥y parameters. The
SCADA parameters used in this research are listedlable 3.1. Note that the
relationships between some parameters on thiaréstvell defined (e.g., power output,
torque, and speed), while others may not be obwousay not even exist. The selection
(ranking) of parameters will be performed by altforis rather than using different

principles.

Table 3.1. Selected SCADA parameters.

Parameter Name Abbreviation
Power output PO

Generator torque GT

Generator speed GS
Wind speed WS

Generator bearing A temperature  GBAT
Generator bearing B temperatufe  GBBT

Drive train acceleration DTA
Blade pitch angle BPA
Nacelle position NP

Rotor speed RS
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To illustrate the methodology presented in SecBahl (see Figure 3.1), the
following three performance parameters have bebscteel: power output, rotor speed,
and generator speed. As generator speed and pated sire linearly dependent, only the
rotor speed is selected for modeling. The virtuadeis are then built for the power
output and the rotor speed.

After deletion of any low quality data of turbine é.g., negative power outputs,
two algorithms (boosting tree and neural network&jewsed to rank order the parameters
that could be potentially used to predict powempatind rotor speed (see Table 3.2 and
Table 3.3). Note that both tables include pararsetfeat can be controlled (e.g., blade

pitch angle) and those that cannot be controllegl,(@ind speed).

Table 3.2. Parameters’ importance in predictirggdbwer output.

Boosting Tree Neural Network
Input Parameter Importance Input Parameter Importance
Generator torque 1.00 Generator torque 172.09
Rotor speed 0.96 Wind speed 5.04
Wind speed 0.90 Rotor speed 4.31
Drive train acceleration 0.64 Blade pitch angle 1.32
- Generator bearing
Blade pitch angle 0.47 temperatur 1.24
Generator bearing . Generator bearing .
temperatur 0.29 temperatur 113
Generator bearing : : :
temperatur 0.27 Drive train acceleration 1.01
Nacelle position 0.09 Nacelle position 1.00

Based on the value of importance in Table 3.2 anlel3.3 and the control logic
of a wind turbine, two controllable parameters sekected: the generator torque and the

blade pitch angle. The drive train accelerationn@d selected, as it is not directly
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controlled, and it is determined by the generadoque and blade pitch angle. The only
non-controllable parameter, wind speed, is alsecsedl. Table 3.4 lists the parameters

used for building a virtual model.

Table 3.3. Parameters’ importance in predicting tiier speed.

Boosting Tree Neural Network
Input Parameter Importance Input Parameter Importance
Power output 1.00 Power output 496.67
Generator torque 0.98 Generator torque 96.47
Wind speed 0.84 Drive train acceleration 1.10
Drive train acceleration 0.72 Wind speed 1.02
Generator bearing A Generator bearing A
0.33 1.01
temperature temperature
Generator bearing B 0.27 Blade pitch angle 1.00
temperature
Blade pitch angle 0.20 Nacelle position 1.00
Nacelle position 0.12 Generator bearing B 1.00
temperature

Table 3.4. Wind turbine parameters of the virmaldel.

Paramete Name Unit
v Wind speed (W< m/s
X Blade pitch angle (BP/ °
%2 Generator torqu(GT) Nm
N Wind turbine power output (P'| kW
Y2 Rotor speed (R! rpm

The wind turbine manufacturer data shows that th&imum generator speed is

1600 rpm, the maximum rotor speed is 23 rpm, theimmam power output is 1600 kW,
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the generator torque is limited to 10090 Nm, aredrttaximum generator torque change
rate is 4500 Nm/s.
1. Impact of the past states

Due to the dynamic nature of the wind energy casigarprocess, it is necessary
to consider the time-based values of input parameiscussed next.
1) Impact of the past values of non-controllatdegmeters

The only non-controllable parameter consideredhia tesearch is wind speed.
The boosting tree and the neural network algorithems used to determine the
significance of different past states of the wipdedyv , i.e.,v attime t, t- 1, t - 2, until
t - 9, in predicting the power output and rotoreghel he importance scores are shown in

Table 3.5 and Table 3.6.

Table 3.5. Wind speed importance in predictinggbeer output.

Boosting Tree Neural Network
Input Parameter Importance| Input Parameter Importance
V(t) 1.00 V(1) 2.23
V(t-1) 0.96 V(t-1) 1.29
V(t-2) 0.94 V(t-2) 1.05
V(t-3) 0.92 V(t-3) 1.01
V(t-4) 0.90 V(t-4) 1.01
V(t-5) 0.89 V (t-6) 1.00
V(t-6) 0.87 V(t-5) 1.00
V(t-7) 0.87 V(t-7) 1.00
V(t-8) 0.86 V(t-8) 1.00
V(t-9) 0.85 V(t-9) 1.00
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Table 3.6. Wind speed importance in predictingrtter speed.

Boosting Tree Neural Network
Input Parametern Importance| Input Parameter Importance
V(t-4) 1.00 V(t-8) 1.00
V(t-9) 0.99 V(t-9) 1.00
V(t-8) 0.99 V(t-2) 1.00
V(t-6) 0.99 V(t-1) 1.00
V(t-1) 0.99 V(t-7) 1.00
V(t-2) 0.98 V(1) 1.00
V (t) 0.96 V(t-6) 1.00
V(t-7) 0.95 V(t-3) 1.00
V(t-5) 0.95 V(t-5) 1.00
V(t-3) 0.94 V(t-4) 1.00

When predicting the wind turbine power, the impoce of the wind speed at the
previous states is arranged in time sequence (gble B.5). However, when predicting
the rotor speed, the order of importance deviatas the time sequence (see Table 3.6).
The two algorithms, the boosting tree and the neoedwork, produced different
sequences; however, the importance scores dogmficantly differ by either algorithm.
Therefore, the valueg (t), v (t-1), v (t-2) andv (t-6) (in essence the wind speed at the
prior minute measured at 10-second intervals) elexted.

2) Impact of the past values of controllable aadfgrmance parameters

The impact of the input parameters measured atip@svals on the future state
of the turbine was shown in [12]. The model govegrihe relationship between the past
and future parameters is not known. In this paalgr the values of controllable
parameters at time intervals t - 2, t - 1, andd e controllable parameters at two past
intervals, t - 2, t - 1, are used to predict thefgrenance parameter at time t (see Figure

3.1).
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Figure 3.5 Parameter selection for virtual modsé®(Table 3.1 for definitions of the
abbreviated parameters).

Figure 3.5 shows the final feature selection far ithiterest aspects: power output
and rotor speed. Three kinds of input parameteddiair past states’ data are included:

Wind speed is the only non-controllable parametersered in this paragraph
andv (t), v (t-1) andv (t-2) andv (t-6) are used in virtual models.

Two controllable parameters, blade pitch angle gederator torque, and their
two past states are selected.

The two past states of performance parameters, rpmuput and rotor speed, are
selected.

3.3.2 Data Sampling

In this section, the statistical properties of tfa¢a sets used in this research are
summarized. The cumulative distributions of the dvépeed, the power output, and the
rotor speed are presented in Figure 3.6 throughr&ig.8. For low wind speed, 96.75%
of the wind speed values are less than 12.5 mé&s88r5% of the power outputs are less
than 1000 kW. For high wind speed, almost 18% ef wind speeds are larger than
12.5m/s, and nearly half of the power outputs &gbdr than 1000 kW. The rotor speed
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for high wind speed values is higher than 10 rpimijav16% of the rotor speeds for low

wind speeds are less than 10 rpm.
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Figure 3.6 Comparison of wind speed distributions.
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Figure 3.7 Comparison of power output distributions
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Figure 3.8 Comparison of the rotor speed distrinsi

The charts in Figure 3.6 through Figure 3.8 dematesthat the low wind speed
distributions cover wider ranges than those for litgh wind speed, especially for the
rotor speed. Specifically, the low wind speed datatains 8.65% rotor speed data that is
smaller than 10 rpm, while the 100% rotor speed éat high wind speed is higher than
10 rpm. Thus, the low wind speed data is selectddrin a training set.

As the wind speed in the interval [3.5-13] m/stisdged, 1500 data points were
randomly selected in each category of the wind dukzda to form a training data. This
way the training dataset is balanced across a#igcaies. The data from turbines 1
through 10 was used to assemble the training @atalable 3.7 shows the percentage of

the data points selected in each class.
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Table 3.7. Percentage of data selected in differiasses of wind speeds.

Number of
Total Number of Data| Percentage
No. | Range Points (1-10) Selgctgd Data (%)
oints
1 3.4 1704: 150( 8.8(
2 4.5 2107: 150( 7.1z
3 4.5-5 2364 150( 6.34
4 -5.5 2493( 150( 6.02
5 5.6 2753: 150( 5.4t
6 6-6.5 3094¢ 150( 4.8¢
7 6.5-7 3483t 150( 4.31
8 7-7.E 3744t 150( 4.01
9 7.5-8 3833¢ 150( 3.91
10 | 88.E 3753 150( 4.0C
11 | 8.59 3187¢ 150( 4.71
12 | 99.t 2518« 150( 5.9¢
13 | 9.510 2047 150( 7.3¢
14 | 1C¢-10.k 1593¢ 150( 9.41
15 | 10.5-11 1242¢ 150( 12.0%
16 | 11-11.F 1009 150( 14.8¢
17 | 11.512 831¢ 150( 18.0¢
18 | 12-12.F 6857 150( 21.8¢
19 | 12.5-13 535t 150( 28.01

3.3.3 Model Extraction

The models for predicting the power output andrtiter speed are expressed in

(3.1) and (3.2), respectively.

V() = f((t=1), yi(t=2), Yo (t= 1), yo (= 2),% (1), % (= 1), % (& 2)% (1) 3.1)
X (t—1), %, (t— 2)V(t), v(t— DYv(t= 2)v(t 6)) '

Yo (1) = f(yi(t=1), i(t=2), y, (= 1), Yo (t= 2)% (1), 4 (t 1), % (= 2)% (1) (3.2)
X (t—1), %, (t— 2),v(t), v(t— Dv(t- 2)v(t- 6)) '
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The performance of the models (3.1) and (3.2) hilsix different algorithms,
specifically, random forest, neural network, bawgtitree, support vector machine,

generalized additive model, and the k-nearest beigh are reported in Table 3.8.

Table 3.8. Performance comparison for models ebeddgoy six different algorithms.

Power Output Prediction Rotor Speed Prediction

Average | Average Mean Mean | Average | Average| Mean
Observed Predicted| Absolute| Relative| Observed Predicted| Absolute

Algorithm Power Power Error Error Rotor Rotor Error

Output | Output | (kW) (%) Speed | Speed | (rpm)

Random | 57390 | 57390 | 2860 | 21.07 | 1566 | 1567 | 091
Forest

Neural | 57603 | 57603 | 803 | 495 | 1564 | 1564 | 0.8
Network

BO0SING | 575.65 | 575.75 | 34.55 | 5471 | 1562 | 1562 | 0.27
Support

Vector 574.47 588.82 23.71 50.82 15.76 13.81 2.67
Machine

Generalized o003 | 57603 | 11.13 | 2021 | 15.64 15.64 0.19
Additive
k-Nearest | oo, 12 | 573097 | 2894 | 959 | 1576 | 1575 | 054
Neighbors

The Absolute Error (AE) and Relative Error (RE) dise Table 8 and all other
tables are defined in (3.3) and (3.4):

Absolute error 3y t( ) y 1 (3.3)

Relative error 430-y() x 100¢ (3.4)
|y

Based on the data in Table 3.8, the neural netwerformed best among the six

algorithms tested. The neural network algorithmsed to train a virtual model to predict
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power output and rotor speed. Here, 30 differentradenetworks were trained, and the

best model was selected to be a virtual model.

3.3.4 Analysis of Computational Results

In this section, the virtual model is evaluatedngsthree types of industrial
datasets. The nature of each dataset of the ypstis similar to the training dataset. In
fact, the training dataset is a subset of the coetbiset of data from 30 turbines.
Therefore, the values of the non-controllable patem (wind speed), controllable
parameters (blade pitch angle and generator tornet)performance parameters (power
output and rotor speed) share the same charait®rist

The nature of each dataset for the second typesvavith the training dataset
because each dataset is collected for differentd wsjeed values. The training dataset
itself includes data at low wind speeds, while ei@sh dataset corresponds to high wind
speed. Thus, the values of non-controllable pamrmetio not share the same
characteristics of the training dataset.

In the third dataset, the values of controllable aon-controllable parameters
have been randomly selected for a turbine and arehndifferent than those in the
training dataset.

1. Power Output Prediction Results
The data set collected from 30 turbines varieduality. The data of turbine 6 and

turbine 21 was removed from the test data setalits tow quality.

Table 3.9 presents statistics from the 28 turbines
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_ Average Mean Standard Mean STD
Turbine AVF()a(l;evl\?eer 83?‘1}’61 Predicted Absolute Deviation of | Relative of
No. (kW) P Power Output Error Absolute Error Relative
(kW) (kW) Error (%) Error
1 474.45 476.36 6.58 6.02 2.91 121.33
2 489.6 486.5 6.61 6.22 2.32 7.12
3 379.36 378.43 5.9 5.85 3.70 116.60
4 494,98 494.85 9.89 8.23 8.65 134.68
5 474.98 473.16 6.05 5.64 3.97 69.24
7 447.35 445.80 6.59 6.56 3.85 24.76
8 462.87 467.1 7.53 6.50 4.74 86.27
9 501.49 504.58 10.36 9.04 5.5 42.13
10 423.1 421.76 5.79 5.22 11.41 768.97
11 467.04 467.13 6.63 12.27 2.56 12.44
12 460.66 459.92 6.46 6.11 5.98 172.36
13 495.85 497.24 5.92 5.05 7.18 814.55
14 448.23 448.29 6.43 6.93 3.95 156.37
15 453.11 456.38 6.25 5.20 3.42 19.54
16 387.48 394.19 10.41 11.80 3.06 5.91
17 472.72 475.38 5.79 5.09 3.7 30.40
18 487.92 490.38 6.3 7.15 3.11 92.01
19 430.67 431.29 6.01 5.84 2.39 10.18
20 429.59 430.03 6.02 6.11 2.53 7.91
22 462.14 464.44 6.35 5.96 3.56 40.24
23 446.34 448.3 7.29 16.13 3.11 17.03
24 468.82 470.45 5.59 4.83 3.66 34.36
25 481.56 482.47 6.36 11.46 2.69 14.93
26 535.22 534.37 6.95 12.74 4.17 174.39
27 459.42 460.54 6.35 12.14 2.52 12.20
28 485.73 486.58 5.57 4.94 2.34 7.96
29 434.28 434.27 5.9 5.61 2.58 14.02
30 462.01 462.58 6.18 13.26 3.11 31.57

The data in Table 3.9 indicates that the smallesimabsolute error is 5.57 kW

(for turbine 28), and the smallest relative ersoRi32% (for turbine 2). The largest mean

absolute error is 10.41 kW (for turbine 16), and llrgest relative error is 11.41% (for

turbine 10). Note that the rated power of eachimgrbs 1.5 MW. Thus, these four
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turbines are selected for further analysis. To pi@wa broader context, the results for

turbine 1 and turbine 26 are also included in #sailits discussed next.

1) Minimum absolute and relative errors

Table 3.10 shows the observed power, predicted p@nd relative error data

when the minimum absolute error is attained fohesdtdhe six selected turbines.

Table 3.10 Statistics for the six selected turbimegsesenting
the minimum absolute error.

Turbine Minimum Observe Predicte Relative

No. Absolute Error | Power Output| Power Output| Error

(kw) (kw) (kw) (%)
1 0.00 680.71 680.71 0.00
2 0.00 122.95 122.95 0.00
10 0.00 137.81 137.81 0.00
16 0.00 47.42 47.42 0.00
26 0.00 572.19 572.19 0.00
28 0.00 199.87 199.87 0.00

2) Maximum absolute error

The observed power, predicted power, and relatig statistics in Table 3.11
correspond to the maximum absolute error for eatiessix selected turbines.

For the turbines in Table 3.11, which representibest case prediction
outcomes of the 28 turbines tested, some erroracaeptable. For example, for turbine 1,
the maximum absolute error is 81.28 kW, yet thatne one is only 8.18%. The

maximum absolute error for turbines 2 and 28 idlamm magnitude to that of turbine 1.
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Table 3.11 Statistics for the six selected turbimegsesenting
the maximum absolute error.

Turbine Maximunr Observe Predicte: Relative
No. Absolute Error | Power Output| Power Output Error
(kw) (kw) (kw) (%)
1 81.28 993.75 912.47 8.18
2 66.57 1201.81 1135.24 5.54
10 159.94 974.38 1134.32 16.41
16 114.16 477.49 363.33 23.91
26 363.55 101.00 464.55 359.95
28 52.68 1251.67 1198.99 421

50

The prediction result of turbine 26, however, id accurate. Therefore, it is

necessary to analyze the error distribution oVestath points for the turbines of Table 11.

The distribution of points for different ranges albsolute errors, i.e., (OkW, 1KW),

though greater than 200KW, is shown in Table 3.12

The results in Table 3.12 indicate that nearly 88f%he absolute errors for each

turbine are smaller than 10 kW, and nearly 99%hefabsolute errors are smaller than 50

kW. This implies that most of the time power outmutccurately predicted. Figure 3.9

shows the absolute error distribution for turbieahd turbine 28. Turbine 28 shows the

best results, and turbine 16 shows the worst esahong the six selected turbines. The

results for the remaining four turbines are betweeiine 28 and turbine 16.
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Turbine Error | Error Error Error Error Error
No. © 1| (5 | (510 | 10,50 | (50,100 | (100, 200 | E'Or >200| Total
N“Prgf’netf o | 5084 | 18030| 13796 | 9689 23 1 0 46623
1 Per(?,z?tag‘ 10.90| 38.67| 29.59 | 20.78 0.05 0.00 0 100
Cumulative
Percentage | 10.90| 49.58 | 79.17 | 99.95 | 100.00 | 100.00 100.00
(%)
Number of | 5263 | 10056 14036 | 9886 16 6 0 | 48263
) Per(ﬁ,z?tag‘ 10.90| 39.48| 29.08 | 20.48 0.03 0.01 0.00 100
Cumulative
Percentage | 10.90| 50.39 | 79.47 | 99.95 | 99.99 100.00 100.00
(%)
Number of | 561 | 17551 11940 | 6532 26 7 0 | 41117
Percentag | 15 39| 4269 20.04 | 15.89 0.06 0.02 0.00 100
10 (%)
Cumulative
Percentage | 12.31| 54.99 | 84.03 | 99.92 99.98 100.00 100.00
(%)
N“Prgf’net: of | 4480 15728| 11472 | 14266 529 1 0 46476
16 Per(‘;z;‘tag‘ 0.64 | 33.84| 24.68 | 30.70 1.14 0.00 0.00 100
Cumulative
Percentage | 9.64 | 43.48| 68.16 | 98.86 | 100.00 | 100.00 100.00
(%)
N“Prgf’net: ol | 5543| 19400| 14746 | 10059 22 0 81 49851
Percentag | 11 15| 38.92| 2058 | 20.18 0.04 0.00 0.16 100
26 (%)
Cumulative
Percentage | 11.12| 50.04 | 79.62 99.79 99.84 99.84 100.00
(%)
N“Prg?net: of | 6255 | 20941| 13993 | 7307 2 0 0 48498
Percentag | 15 99| 43.18| 28.85 | 15.07 0.00 0.00 0.00 100
28 (%)
Cumulative
Percentage | 12.90| 56.08 | 84.93 | 100.00 | 100.00 | 100.00 100.00
(%)
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Figure 3.9 Absolute error distribution for turbiriss and 28.

3) Maximum relative error

Figure 3.9 shows the observed and predicted p@sexell as absolute error data,

when the maximum relative error is attained forheaicthe six selected turbines.

Table 3.13 Statistics for the six selected turbines
representing the maximum relative error.

Turbine Ma>_<imurr Observe Predicte: Absolute

No. Relative Error| Power Output| Power Output| Error

(%) (kw) (kw) (kw)
1 11231.33 0.07 7.72 7.65
2 1018.55 3.09 34.61 31.51
10 38624.42 0.01 3.71 3.70
16 638.84 1.10 8.15 7.05
26 36908.10 0.04 -15.81 15.85
28 748.90 0.89 7.59 6.69
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The results in Table 3.14 indicate that almost 3fi%he relative errors are less
than 5%, and 97% of the relative errors’ percerdagie not greater than 10%. This
confirms that the model accurately predicts poweput for the vast majority of turbines.
Figure 3.10 shows the relative error distributiontfirbine 16 and turbine 28. Turbine 28
shows the best results, and turbine 16 shows thstwesults. The prediction results for

all other four turbines fall between those of tnbR8 and turbine 16.

Table 3.14 Relative error distribution.

Turbine S5%- 10%- 20%- 100%-

No. 0-5% | 10% | 20% | 100% | 1000y | >1000% | Totl

lg;lgirr?t?er of 42031 | 3135 | 987 | 418 50 2 46623
1 Percentage (%) | 90.15 | 6.72 2.12 0.90 0.11 0.00 100.00

Cumulative

vercentage (o | 90-15 | 96.87| 98.99 | 99.89 | 100.00 | 100.00

Blgirr?t?er of 43795 | 3176 | 1016 | 262 14 1 48264
2 Percentage (%) | 90.74 | 6.58 211 0.54 0.03 0.00 100.00

Cumulative

vercentage (¢ | 9074 | 97.32| 99.43 | 99.97 | 100.00 | 100.00

g‘c‘)‘irr:‘t?er of 36037 | 2920 | 1131 | 724 | 261 as | 41117
10 | Percentage (%) | 87.65 | 7.10 | 2.75 | 1.76 0.63 011 | 100.00

Cumulative

vercentage (¢ | 87:65 | 94.75| 97.50 | 9926 | 99.89 | 100.00

g‘c‘)‘irr:‘t?er of 39202 | 6109 | 890 | 246 29 0 46476
16 | Percentage (%) | 84.35 | 13.14| 1.91 | 0.53 0.06 0.00 | 100.00

Cumulative

vercentage (o | 8435 | 97.49| 99.41 | 99.94 | 100.00 | 100.00

lg;lgirr?t?er of 45688 | 2717 | 1013 | 305 114 14 49851
26 Percentage (%) | 91.65 | 5.45 2.03 0.61 0.23 0.03 100.00

Cumulative

vercentaq(s) | 9165 | 9710 99.13 | 99.74 | 99.97 | 100.00

Blgirr?t?er of 44140 | 2872 | 1058 | 400 28 0 48498
28 | Percentage (%) | 91.01 | 592 | 2.18 | 0.82 0.06 0.00 | 100.00

Cumulative

vercentage (o | 9101 | 96.94| 99.12 | 99.94 | 100.00 | 100.00
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2. Results for the rotor speed prediction

The average observed and predicted values of toespeed for all 28 turbines
are shown in Table 3.15.

The data in Table 3.15 illustrate that the mealabs errors are between 0.1 rpm
and 0.2 rpm. Turbine 28 shows the smallest meaal@bserror, and turbine 18 shows
the largest. Thus, the turbines 1, 18, 26, and@8elected for further analysis.

As a significant percentage of rotor speed is zeroclose to zero, the

corresponding relative error is large. As the rssare meaningless, they are not

presented here.
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Figure 3.10 Relative error distribution for turbib@ and turbine 28.
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Table 3.16 shows the observed and predicted rpe®dsdata for the four turbines

when the minimum absolute error is attained.

Table 3.15 Statistics for the four turbines repnéisg the minimum absolute error.

Turbine Min Absolute Errot Observed Rotor Spet Predicted Rotor spet

No. (rpm) (rpm) (rpm)
1 0.00 0.14 0.14
18 0.00 14.02 14.02
26 0.00 0.03 0.03
28 0.00 20.25 20.25

Table 3.16 Average results for the rotor speedigtied.

Average Average Mean STD

Turbine Observed Predicted | Absolute of
No. Rotor Speed | Rotor Speed| Error | Absolute

(rpm) (rpm) (rpm) Error

1 15.36 15.37 0.21 1.24

2 15.90 15.91 0.20 1.21

3 15.46 15.47 0.20 1.19

4 15.47 15.47 0.16 0.27

27 15.22 15.22 0.19 0.32

28 15.73 15.73 0.13 0.21

29 13.54 13.54 0.17 0.95

30 15.76 15.74 0.16 0.33

2) Maximum absolute error

Table 3.17 shows the observed and predicted rpe®dsdata for the four turbines

corresponding to the maximum absolute predictioorer
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Table 3.17 Statistics for the four turbines
representing the maximum absolute error.

: Max Absolute Erro Observed Rotor Spet Predicted Rotor Spe
Turbine No. (rom) (rom) (rom)

1 120.47 19.88 140.34

18 135.49 0.00 135.49

26 120.90 19.70 140.61

28 3.09 10.02 13.11

For maximum absolute error, some predictions avool wrong; however,
some are acceptable, and turbine 28 is such anpdsalinthe percentage of wrong

prediction is small, then the prediction modeldseptable.

3) Distribution of absolute error
The results in Table 3.18 indicate that most ofathgolute errors are less than 1
rpm. Turbine 1 represents the worst case scenelniere the absolute error is less than 1

rpm for 62.54% of the instances tested.

3. Prediction of power output and rotor speed fghhwind speed

For the same turbines, data sets for high winddspealso provided. To indicate
that the model is also suitable in the high windespsituation, turbines 1, 16, and 28
have been randomly selected to test the accurattyegirediction models.
1) Average prediction results

The statistics for the prediction of the power rapeed for the three selected

turbines at high wind speed are shown in Table &rBTable 3.20, respectively.
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: Error
Turbine Error | Error | Error | Error | Error
No. 0,0.2) | 0.2-1)| (1.2) | (2-5) | (5-10) 1%8? Error >100 | Total
Number of pointg 13359 | 15801 | 6334 | 7048 | 2709 1202 170 46623
1 Percentage (%)| 28.65 | 33.89 | 13.59| 15.12 | 5.81 2.58 0.36 100.00
Cumulative
percentage (9 28.65 | 62.54 | 76.13| 91.25| 97.06 | 99.64 100.00
Number of pointg 41041 | 10116 | 493 42 0 519 8 52219
18 Percentage (%)| 78.59 | 19.37 | 0.94 | 0.08 0.00 0.99 0.02 100.00
Cumulative
percentage (9 78.59 | 97.97 | 98.91| 98.99 | 98.99 | 99.98 100.00
Number of pointg 36527 | 12195| 920 117 75 13 4 49851
26 Percentage (%)| 73.27 | 24.46 | 1.85 | 0.23 0.15 0.03 0.01 100.00
Cumulative
percentage (9 73.27 | 97.74 | 99.58 | 99.82 | 99.97 | 99.99 100.00
Number of point§ 38652 | 9412 | 393 41 0 0 0 48498
28 Percentage (%)| 79.70 | 19.41 | 0.81 | 0.08 0.00 0.00 0.00 100.00
Cumulative
percentage (9 79.70 | 99.11 | 99.92 | 100.00| 100.00| 100.00 100.00
Table 3.19 Power prediction results for the thededed turbines at high wind speed.
Average Average Mean S;F Average STD
Turbine Observed Predicted Absolute Absolute Relative of Relative
No Power Output Power Output Error Error Error Error (%)
(kw) (kw) W) |y |0
1 735.06 742.42 10.18 8.42 2.67 28.04
16 745.96 746.73 7.24 6.94 1.63 3.63
28 804.77 807.19 6.97 6.23 2.23 9.07

2) Distribution of the results

The results in Table 3.21 indicate over 99% ofahsolute errors are less than 50

kW. As this data set represents high wind speédsaverage power output is high, and

the result accuracy is acceptable. Table 3.22 shiosvdistribution of relative error of the
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selected turbines. Over 97% of the relative erasesless than 10%, and nearly 99% of

the relative errors are less than 20%.

Table 3.20 Speed prediction results for the thedected turbines at high wind speed.

Turbine | Average Observed Average Predicted Akl\)/ls?)?;t e of Etg(:)lut e
No Rotor Speed (rpm) Rotor Speed (rpm) Error (rpm Error (rom
1 16.72 16.71 0.24 0.34
16 16.8¢ 16.8¢ 0.2t 0.3t
28 17.0¢ 17.0¢ 0.1t 0.22

Table 3.21 Distribution of the absolute error af fower output
prediction at high wind speed.

Turbine Error | Error | Error I%:rLrOo_r I%groo_r (Elr(gc())r Error | 1 oial
No. 0,1) | (1,5 | (5,10) 50) 100 200 > 200
Number of 102¢ | 106¢ | 1652
points 2812 4 ) 0 55 0 0 40335
Percentag | ¢ 97 | 2545| 26.49| 40.96| 014 | 000 | 000 | 109
1 (%) 0
Cumulative
percentage | 6.97 | 32.42| 58.91| 99.86 | 100.00| 100.00 | 100.00
(%)
Number of 163¢ | 120C | 106«
points 4609 9 3 6 46 1 0 43674
Percentag 10.t 100.(
16 (%) 5 37.48| 27.48| 24.38| 0.11 0.00 0.00 0
Cumulative 105
percentage 5' 48.03| 75.52| 99.89| 100.00| 100.00| 100.00
(%)
Number of 1664 | 128¢ | 104¢
points 4672 6 9 9 11 0 0 44717
Percentag 10.¢ 100.(
18 (%) 5 37.23| 28.82| 23.48| 0.02 0.00 0.00 0
Cumulative 10.4
percentage 5' 47.67| 76.50| 99.98 | 100.00| 100.00| 100.00
(%)
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Table 3.22 Distribution of the relative error oéth
power output prediction at high wind speed.

Turbine 50 | 10% | 20% | 100% | >
No. 0-5% | 10% | 20% | 100% | 1000% | 1000% | TO@
N“prgﬁﬁf of | 35828 2760 | 480 | 229 27 2 | 40335
1 Percentage (%) 91.22| 6.84 | 1.21 0.57 0.07 0.00 | 99.91
Cumulative
sercentage (o | 91-31| 98.15 | 99.36| 99.93 | 100.00 | 100.00
N“prgﬁﬁf O | 41543| 1505 | 448 | 174 4 0 | 43674

16 Percentage (%) 95.12| 3.45 | 1.03 0.40 0.01 0.00 | 100.00

Cumulative
soraontege (o | 95-12| 9857 | 9950/ 99.99 | 100.00 | 100.00
N“prgﬁﬁf of | 41435| 1026 | 797 | 502 57 0 | 44717

28 Percentage (%) 92.66 | 4.31 | 1.78 1.12 0.13 0.00 | 100.00

Cumulative
percentage (% 92.66| 96.97 | 98.75| 99.87 100.00 | 100.00

Table 3.23 Distribution of the absolute predictesror of the
rotor speed at high wind speed.

Turbine Error Error Error | Error Error Error Error > Total
No. (0,0.2) | (0.2-1) | (1,2) | (2-5) | (5-10) | (10-100)| 100
Number of
boints 26633 | 11995 | 1575 | 132 0 0 0 | 40335
(F:,/eo)rce”tage 66.03 | 29.74 | 390 | 033 | 000 | 0.00 0.00 | 100
1 Cumulative
percentage | 66.03 | 95.77 | 99.67| 100.00| 100.00| 100.00 | 100.00
(%)
Number — ofl ,gg75 | 13075 | 1615| 112 0 0 0 | 43674
points
(Ff,/eo)rce”tage 66.11 | 29.94 | 3.70| 026 | 000 | 0.00 0.00 | 100.00

16 Cumulative
percentage 66.11 96.05 | 99.74| 100.00( 100.00| 100.00 | 100.00

(%)
Number  of 33960 | 10239 | 500 | 18 0 0 0 | 44717
points
Z/eo)rce”tage 75.94 | 22,90 | 1.12 | 0.04 | 0.00 | 000 | 0.00 | 100

28 Cumulative
percentage 75.94 98.84 | 99.96| 100.00( 100.00| 100.00 | 100.00
(%)

www.manaraa.com



60

www.manharaa.com

In this section, another 10-second dataset randeeigcted from the same wind

Table 3.22 illustrates the distribution of absoleteors for rotor speed at high
farm is used to test the virtual models. After dsimg, 32725 data points are provided.

The distribution of wind speed, power output, aotbr speed is shown in Figure 3.11

4 Prediction of power output and rotor speed ugidgpendent datasets

wind speed. Over 99.5% of the errors are less 2hgm.

through Figure 3.13.
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15.222 16.848 18.474

13.596

Rotor speed (#)
Figure 3.13 Rotor speed distribution.
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The average prediction results for the power amor rgpeed are shown in Table
3.24 and Table 3.25. The results indicate thatpbeer output and rotor speed are
accurately predicted. Note that the test data sgmts different measurements taken at

different turbines. The high prediction accuracytlté power output and rotor speed is

reinforced in Figures 3.14 and 3.15 for 71 conseewvind speeds.

Table 3.24 Prediction results of the power output.
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Table 3.25 Prediction results of the rotor speed.

Average Observe Average Predicte Mean Absolut STD
Rotor Speed (rpr Rotor Speed (rpr Error (rpm of Absolute Erra
14.87 14.88 0.14 0.22

1400
% 1200 - t ¥
EE_ 1000 Y &
800 TTTTTT I T I T T I I rr r T rrr rr T rrrrrrrrrrrrrr rrrrrrrrrrrrrrrrm
1 11 21 31 41 51 61 71
—— Observed power output —s— Predicted power output

Figure 3.14 Prediction of the power output.
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Q
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—+—Observed rotor speed —#— Predict rotor speed

Figure 3.15 Prediction of the rotor speed.
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3.5 Summary

In this section, a methodology for building virtumbdels for the prediction of the
parameters of a wind turbine was presented. Thpogexl methodology involved three
steps: data preprocessing, model extraction, ardeim@lidation. In the first step, after
analyzing the raw data, the controllable paramedads non-controllable parameters, as
well as their past states, are considered for feagalection. In order to eliminate data
bias, a stratified sampling is performed basechenitind speed.

Two parameters were selected to test the propostidonnlogy: power output
and rotor speed. The models were extracted byiffereht algorithms: random forest,
neural network, boosting tree, support vector magshgeneralized additive approach,
and thek-nearest neighbor algorithm. The neural networkngtbthe best performance
and was selected for extraction of the models &mameter prediction.

The models developed in this paragraph were vaiitiély three datasets of different
characteristics, including the wind speed range tithe period, and the source. The first
dataset included data corresponding to low windedpe the second dataset was
generated at high wind speeds, and the final datarandomly selected from a turbine at
the same wind farm. Although the test datasetsesladfiferent characteristics, the

parameters predicted by the virtual models werairate. This implies that the virtual

models can be used to predict the power outputratod speed for a turbine of interest

using the data collected at other turbines.
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CHAPTER 4.
SHORT TERM POWER PREDICTION BASED ON CLUSTERING
APPROACH

4.1 Introduction

In this chapter, data-mining algorithms are appfiedshort-term prediction of
generated wind power. The previous research iretictitat the accuracy of short-term
power prediction deteriorates at low levels of diserved power. In some cases, the
prediction error could be large and this makespesiction results meaningless. The
reason behind this poor performance might duedathorithms not being able to model
certain ranges of data. To address this problewiustering-based method for power
prediction is proposed. The goal is to develop rM®(elled here customized models)
for situations that share certain data charactesigefined by the data clusters.

In the quest of maximizing prediction accuracyoat wind speeds, first, the input
space (data used by data-mining algorithms) isntifiled by selecting parameters using
physics-based equations and data-mining algorit@®asond, the input space is clustered
into several mutually separable subspaces by adbari data with the most
characteristics (clusters). Third, data-mining &thons produce models for each

clustered sub-space. Fourth, computational reatdtseported, compared, and discussed.

4.2 Data Description and Methodology for Short Term

Prediction of Power with Clustering Approach

4.2.1 Data Description and Parameter Selection

Wind turbine data is usually collected by a Sumawy Control and Data

Acquisition (SCADA) system. Though the data sangplirequency may be relatively
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high (e.g., 20Hz), the data is averaged into tintervals, e.g., 10-s, 30-s, or 10-min, that
are suitable for various applications. The datal usehis paragraph was collected at 10-s
intervals (called 10-s data) collected at a 1.5 Mivd turbine (randomly selected) for a
period of seven days. For the selected wind turlilree cut-in speed is 3.5 m/s, the rated
speed is 12.5 m/s, and cut-out speed is 21 m/sn Wrew of turbine operations, wind
speed in the range [3.5m/s, 12.5m/s] is of intei@shdustry. Thus, the data with wind
speed lower than 3.5 m/s or higher than 12.5 m/e baen excluded from analysis in the
research reported in this paragraph. Data poirits twe negative power output have been
also deleted. The data from the first five daygptagimately 2/3 of all data) was used to
extract models and the data from the remainingdexs (approximately 1/3 of all data)

was used for test and validate models. The datasset in this research is characterized

in Table 4.1.
Table 4.1 Description of the training and tesadat
Data Set Start Time End Time Time Interval | Number of Data Points
Training | 8/8/07 12:00 AM | 8/12/07 12:00 AM 10-s 30354
Test 8/13/07 12:00 AM | 8/15/07 12:00 AM 10-s 15860

The data available for this research included noomsmparameters of a wind
turbine. Some of these parameters could have anfmtempact on the prediction
accuracy of wind power to be generated at 10-sviake These parameters include: the
Power Output (PO), Generator Torque (GT), Genergpmed (GS), Wind Speed (WS),
Generator Bearing A Temperature (GBAT), Generatearthg B Temperature (GBBT),

www.manaraa.com



66

Drive Train Acceleration (DTA), Blade Pitch AnglBRA), Nacelle Position (NP), and
the Rotor Speed (RS).

These ten parameters can be categorized intotlagses:
e  Controllable parameters (the parameters of a wumbirte that can be
adjusted), e.g., Blade Pitch Angle (BPA), Generatmque (GT).
. Non-controllable parameters (those that cannotdpested (controlled)),
e.g., Wind Speed (WS).
e  System performance parameters (the ones that are pyedicted), e.g.,
Power Output (PO), Rotor Speed (RS).

Both, the science and the experience, indicatenibiaéll of these ten parameters
have equal impact on the short-term power predictihich leads to parameter selection.
The parameter selection can be accomplished ie thegs: expert knowledge, physics-
based equations, and data-mining algorithms. kphragraph, physics-based equations
are used first for parameter selection as explaiesdl

The power extracted from the wind is expressedLbl) (The power coefficient
C, (4, B) of expression (1.1) contains the blade pitch afigland the tip-speed ratio
defined in (4.1) [22]:

v (4.1)

where o, is the rotor speedRis the rotor radiusyis the wind speed. For a given blade
pitch angleg, any change in the wind speed implies changea@ntifitspeed ratiol of
(4.1), thus leading to the variation of the poweeficientc (2,5) and the generated
power outpuB,.

The mechanical power is also be expressed by thatieq in (4.2) [22]:

R=ol (4.2)
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whereT is the aerodynamic torque awaglis the rotor speed.

Based on the equations (1.1) through (4.2), fiveapaters are selected as
candidates, including wind spe#&d blade pitch anglg, generator torqu&, and rotor
speedy, . Considering the fact that the system inertia ¢dog significant, the power
outputP, is also included. The air densigyand rotor radiusR are regarded here as

constants. The initially selected parameters atediin Table 4.2.

Table 4.2 List of parameters selected for wind dpestimation.

Parameter Typ | Parameter Nan | Abbreviatior | Symbo | Unit

Non-controllable Wind spee WS v m/s
Blade pitch ang| BPA X °

Controllable Generatotorque GT %2 Nm

Performance Power outpt PC N kW

Rotor spee RS Y2 rpm

The five parameters in Table 4.2 have been seldxsdd on the equations (1.1)
through (4.2). They include a non-controllable paeter, the Wind Speed (WS); two
controllable parameters, Blade Pitch Angle (BPAJ &enerator Torque (GT); and two
performance parameters, the Power Output (PO) ladRotor Speed (RS). Since time
delay is considered as having impact on the maocigiracy, it also considered and thus

further parameter selection is accomplished with-gianing algorithms.

4.2.2 Proposed Methodology

The proposed methodology is outlined in Figure #He input data (controllable,

non-controllable, and performance parameters) septeng the input space undergo

parameter selection and clustering. Based on tteeinl@ach cluster, a model is produced
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with data-mining algorithms. The number of inputgmaetersn (dimension) and the
number of instancesl define the input spa¢g, . For each parameter in the input space,
there aren = 303s4training instances (see in Table 4.2), and1586c test instances (see

in Table 4.2). Each of the modaels.. k predicts power outputo(t) at timet.

N p— —)l Cluster 1 I—}' Model 1 |—
I Non-controllable l
—>|  Cluster2  [—»{  Model2 [—
Controllable Parameter Input Space
l I Selection Clustering —» PO ()
| Performance I —}| . |—>| l—
—_— e —>| Cluster k |—>| Model k |_

Figure 4.1 The methodology for clustering-basedgrgovediction.

The steps of the methodology presented in Figurare discussed next.
1. Parameter Selection

The five parameters listed in Table 4.2 partialgsctibe the input space. The
impact of past states of non-controllable, coraitdé, and performance parameters needs
to be reflected in the proposed model. The inpaiceps, for the m past states of

parameters listed in Table 4.2 is defined by ve@t@).

1S, = [Wt=2), vt 1), X(B, X(E M), XYoo X (£ 1) 4.3)
Yo(t=D), Yy = M), Y (= D),y € )]

Of all n parameters, the most significant are selectedavitiN algorithm.

2. Clustering Input Space
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The input training data set is clustered by tameans algorithm using five
different data processing scenarios. Then, eadarios of test data is assigned to the
nearest cluster center (centroid) of the trainiagado identify the most similar cluster.

1) Clustering training data set

In this section, the training data set is clusteir@d k subspaces. Based on

parameters selected for clustering, the followinge fdata processing scenarios are

considered:
a) Clustering wind speed estimated by its one pat sta
b) Clustering wind speed estimated by the time senedel
C) Clustering generator torqué(t)

d) Clustering generator torquég(t) and rotor speed, (t—1)
e) Clustering generator torqugt) , rotor speegl,(t-1), and the

power outputy, (t-1)

The first two scenarios explore the impact of wepgked on the accuracy of
power output predictions at 10-s intervals. Aswhed speedv(t) at future timet is not
known, two estimation methods have been appliee. first one (item (a) above) uses
wind speed at one past stafe-1), and the second one is based on the time seridslmo
to estimate. Prediction of wind speed with theetiseries models has been proven to be
accurate (see [13]).

The final three scenarios of clustering the inppéce originate in predictors’
importance. The first three most significant pareanetates determined by the data-
mining algorithms are the generator torgye, rotor speeg,(t—1), and power output
y,(t-1). All parameters are studied for impact of clustgtihe input space.

2) Clustering the test date set

For then dimensional space, the center (centroid) of itheluster of training

data is denoted g8, X,,...,X, ], wherei is the number of the cluster satisfylngi <k .

Note that values of', X,,...,X, have been normalized according to (4.4) to baldhee

bias due to the variability of the input data:
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Xin, normalized — x n/ )g"l ,may 044

where X S the normalized value and in the range [0, 1].

n, normalize

Each instance in test data is denoteflzas, ..., z] and is normalized according
to (4.5):
Zn, normalized — ;1/ Xﬂ,ma} qﬂ
Thus, the distance from a normalized iNStaB&E, aises- %  nomaizeht® thei™”

cluster centriod of training data is defined ir6{4.

Di = \/(Zl normalized X 1, normalize)12+ """ + (Zw , normalized )i(n , normalized (46)

The aim is to find for each data instance, a ctugféh the minimum distance
between the instance and the cluster centriods.clistering algorithm of the test data

set is shown in Table 4.3.

Table 4. 3 Algorithm for clustering test instances.

Begin
Fori=1tok
Dmin — 1
D' = \/(21, normalized X 1, normalize)lz-"-’ eyt (% , normalized )I(n , normalizfd
Ifp' < D™
Lelb "= DI 1 [21 normalized " **? Z’I ,normalize]z [ 2 1, normalized *? Z’I qrmalized]
Else
Next i
End
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As illustrated in Table 3.3p™ initially set to 1 and then it is replaced with a

shorter distance found. In this way, each instdraa the test data set is assigned to the

closest cluster.
3) Evaluation of clustering effectiveness

The reason for clustering the input space is teegehhigh prediction accuracy of
the customized model with a few input parametecsd&monstrate the effectiveness of
clustering, NN models are constructed for fiveati#t clustering scenarios. A clustering

scenario with the highest prediction accuracy isdu®r the final model extraction and

validation.
3. Model Extraction and Validation

After all instances from the training and test dsgés have been assigned to the
corresponding clusters, data-mining models are togeied and validated. For each

training data set of a given cluster, models areaeted with data-mining algorithms.

Every model is tested using the correspondingdasst set.

The structure of the cluster-based power predictiodel is presented in (4.7).

0 if v(x 3.5n &

f,(@ if 1S, eCluster
, f if 1S, e Cluste 4.7
yl (t) — 2(9 € 5 ( )

f.(@ if IS, e Clustef
1500 if v{( )} 12.5n §

The predicted power outpyt (t) is assumed to be 0 when wind speed is less than
3.5 m/s and it equals 1500 kW for the wind speeghéri than 12.5 m/s. For the wind
speed in [3.5, 12.5] m/s, the input space is ctadténto k subspaces. The prediction

accuracy for the test data in each subspace igsdisd in Sections 4.3.
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4.3 Industrial Case Study on Short Term Prediation

Power based on Clustering Approach

4.3.1 Parameter Selection
Different algorithms, e.g., the Boosting Tree Algfum (BTA), Neural Network
(NN), and the Random Forrest Algorithm (RFA), canused to determine importance of
parameters and their past states (predictors). h&s NN algorithm has been used
numerous times in this paragraph, it is also agptee compute absolute importance,
based on which, relative importance of paramegegenerated according to (4.8).

AbsolutelmportanceRS 4.
Relativelmportance = P RS ) (4.8)

> AbsolutelmportanceRS,

=1

wherePs is thej™ parameteri< j <n) andnis total number of predictors.

Next, models with five different number of inpupddictorsn=27,10,3,2,) are
discussed.
1. Twenty Seven Inputs

To reflect the importance of parameters used fddimg of the power prediction
model and their past states, the initial vatuef the past states is set to 5 (50 seconds =5
past values measured at 10-s intervals). Thugpthenumber of predictors (input states)
nequals 27 (5 WS past states + 5 PO past statd®S-fast states + 5 GT past states + 5
BPA past states + 1 current GT state + 1 currend BRate). The input space is

represented as vector (4.9).

IS,, =[(t-D),...,v(t=5),% (t),....x (+ 5),% t),...x & 5
yl(t_l) ----- y1 (t_ 5)’y2 (t_ 1) ----- 2 (_ 5)] (49)
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A NN algorithm is applied to determine the impodarf predictors. The first ten

most important predictors among all the 27 statdsg. (4.9) are shown in Table 4.4

Table 4. 4 The 10 most important predictors of @®).

Input No. | Parameter Statq Importance Per(c(:)z?tag‘
1 GT() 781.48 94.28
2 RS¢ -1) 11.53 1.39
3 RS¢ -2) 3.82 0.46
4 POt -1) 3.30 0.40
5 RS -3) 1.99 0.24
6 GT(t-1) 1.87 0.23
7 POt -2) 1.86 0.22
8 RS¢ -4) 1.53 0.18
9 POt -3) 1.48 0.18
10 POt -5) 1.48 0.18

As illustrated in Table 4.4, the ten most importar@dictors amount to 97.76% of

the total importance score of all 27 states. Toaucedthe computational effort, the

remaining 17 states contributing 2.34% of the aVamgortance and not considered for

further analysis.

2. Ten Inputs

Here,n=10 parameters listed in Table 4 are used as inputetdiN model. The

input space is represented as the vector of poedi¢4.10).

1S, =0 W(t-1),..., u(t=3), % (- 5), % (- 1),...% & 4)% €)% & 1 (4.10)

The importance of predictors is computed by thedidrithm as shown in Table

4.5.
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:\rl%u(t)sf Parameter State | Importance | Percentage
1 GT(t) 865.32 95.61
2 RS(t -1) 25.15 2.78
3 PO(t -1) 2.76 0.31
4 RSt -2) 2.61 0.29
5 GT(t-1) 2.27 0.25
6 PO(t -2) 1.86 0.21
7 RS( -4) 1.50 0.17
3 RSt -3) 1.34 0.15
9 PO( -3) 1.15 0.13
10 PO( -5) 1.07 0.12

The sequence of predictors in Table 4.4 with Tabk differs, yet GTf) and

RS¢t-1) remain on the top of both lists. The third peeat of interest is P@{1) rated as

important in both tables, comparable to R&)( As illustrated in Table 4.5, the

importance of the three predictors amounts to 98.705.61%+2.78%+0.31%). The

importance of the remaining seven predictors thamat considered for further analysis

amounts to 1.3%.

3. One, Two, and Three Inputs

For n= 3, the input space is represented as the vetpyedictors (4.11).

I1S; =[W(t=1), y,(t=1), % (9]

(4.11)

The importance of predictors recomputed with a Ndd@thm is shown in Table

4.6.
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Table 4.6 Importance of predictors of Eq. (4.11).

:\rll%u(t)j Predictor Importance Percentage
1 GT() 824.83 96.14
2 RS(-1) 30.48 3.55
3 PO(-1) 2.63 0.31

Based on (4.11), the predictor vectors fior 2 andn = 1 are presented in (4.12)

and (4.13), respectively.

IS, =[ y,(t-1), %,(9] (4.12)

IS, =[%(9] (4.13)

4. Comparison of Prediction Performance

To evaluate prediction performance of the modeleldped in this paragraph the
following metrics are used: the Mean Absolute Er(btAE), Mean Relative Error
(MRE), Standard Deviation of MAE, and MRE. The MAIBd MRE that serve as the

basis for formulating other two metrics are define{4.14) and (4.15).

z y*l(t) - yl(t)
MAE = ¥ (4.14)

Z y*l(t) B yl(t)

MRE = :\’ll(t) (4.15)

where y',(t)is the predicted power output of Eq. (4.7) apf)is the observed value

provided in the datal\ is the number of instances in the correspondingteiu
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To compare performance of models with different bamof predictors (inputs),

heren= 27, 10, 3, 2, 1, the prediction accuracy of bt#ining and test data are

summarized in Table 7. For eanh 30 NNs are constructed and the best performing NN

is selected for comparative study.

Table 4.7 Prediction results for different numbepm@dictorsn .

Average Average Mean Mear
Nu(r)r;ber Data Set Obser\?ed Predic?ed Absolute S(;I;D Relative S(')I’fD
Predictors Power Output Power Output Error MAE Error MRE
(kW] (kW] [KW] [%]

27 Training 442.75 442.74 8.48 7.11 4.25 20.08
Test 605.56 605.56 10.72 9.01 2.20 5.84
10 Training 442.75 442.73 8.60 7.43 4.04 14.44
Test 605.56 605.34 10.78 9.56 2.23 7.14
3 Training 442.75 442.68 8.83 7.65 4.89 62.14
Test 605.56 605.17 10.98 9.78 2.25 5.73
2 Training 442.75 442.74 8.86 7.66 4.33 19.84
Test 605.56 605.38 10.97 9.77 2.26 6.50
1 Training 442.75 442 .66 9.42 7.91 4.48 16.54
Test 605.56 604.88 11.40 9.89 2.34 5.20

The best test prediction performance reported l€rd.7 was attained far= 27

predictors (the row in italics) on the four metrit4AE, MRE, STD of MAE, and MRE).

A reduced number of predictors has resulted inedesad prediction accuracy for the test

data. Compared with= 27, for n=3, the MAE increases by 0.26 kW, and it increases

by 0.68kW forn=1.

however, at an increased computational time.

A larger value ofn (number of predictors) produced better qualityultss

T thhining time on a standard

desktop computer for different number of predictorss listed in Table 4.8. For each,

30 NNs were built and the best performing NN wasut® generate results.
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Table 4.8 NN Training time for different numberpy&dictorsn .

Number Computationa
of Predictor | Time [hour
27 13.65
10 3.5¢
3 1.3¢
2 1.2¢
1 1.1¢€

As illustrated in Table 4.8, the computational timas reduced over 10 hours

whenn was reduced from 27 to 10, and by 2.2 hours whewas reduced from 10 to 3.

For n smaller than 3, the computational time did not gignificantly reduced. To

balance prediction accuracy and computational tiime,vector of predictors (4.11) has

been selected for further analysis. The three petemstates in Eq. (4.11) include

generator torquex(t) , rotor speedy,(t-1) , and power output,(t—1) with the

corresponding base performance marked in bold oheT& 7.

The input space is partitioned using the k-meamsteting algorithm according to

five different clustering scenarios. The clustersagnario with the best performance is

selected for model extraction.

4.3.2 Clustering Input Space

In this section, five clustering scenarios are igthld Each scenario involves

different set of predictors.

First, the training data set is clustered iRtdusters by thé&-means algorithm.

The number of clusterk varies from 2 to 5. The numb&ris not expected to be large

due to concerns of the model complexity. Instarafethe test data are assigned to the

nearest cluster centriod of the training dataseh whe algorithm shown in Table 3.
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Second, 30 NNs are built for each cluster and @ performing model is selected.
Third, prediction results for each cluster are carag.

Computational experience with the five clusterimgraarios is discussed in the
next five sections.
1. Clustering Based on a Single Past State of \Sjmekd

The generated wind power is impacted by the wiredp(t), therefore here and
in the scenario to follow, it is used to clustee thput space. After the training data has
been clustered orft) with the k-means algorithm intioclusters, the corresponding value
of the generator torque(t) , rotor speed, (t—1), and power outpuyt (t—1) are assigned
to each instance in every cluster. Note that thelvgpeed/(t) is used only to clustering,
without being used to train a NN model. The valtiziod speed(t) is estimated by two
methods: one using one past state of the wind spelgdi.e.y (t) = (t-1), and the other
(see Eq. (4.16)) in the form of a time series model

For the training data set clustered on wind spe@d1) by the k-means
algorithm and number of clusteks= 2,..., 5. After the best performing NN has been
selected (out of 30 NNs produced for each clustiee) prediction results for the test data

are shown in Table 4.9.

Table 4. 9 Prediction performance based on thedastered
on the past state of wind spegt-1).

Observec| Predictec

Input Mean Mean

Space Number| Average | Average Absolute STD Relative STD
Clustered of Power Power Error of Error of

Clusters| Output | Output MAE 0 MRE
by [KW] [KW] (kW] [%0]

WS(t-1) 2 605.56 605.29 10.90 | 9.64 2.29 8.63
WS(t-1) 3 605.56 605.22 10.98 | 10.45| 2.29 7.90
WS(t-1) 4 605.56 605.32 10.86 9.54 2.27 6.04
WS(t-1) 5 605.56 605.40 10.89 | 9.69 2.33 |10.80
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As illustrated in Table 4.9, the best predictiorcuaacy is attained fok =4
(shown in bold). However, it is not significanthetter than the base performance for
vector space (4.1Qyith MAE = 10.98 kW, STD of MAE = 9.78 kW, MRE =25 %,
and STD of MRE = 5.73% (see in bold in Table 4.7).

2. Clustering on the Wind Speed Estimated by a Tamges Model

Using a time series model is another way to esénta wind speesl(t) based
on model in (4.16).

V() =V () = f((t-1),...,v(t= 5)) (4.16)

Here, the five past values of wind spegd-1),...v(- 5) serve as inputs to a NN
algorithm. The estimated wind speed(t) is used for clustering by th&means
algorithm, fork = 2,..., 5. The corresponding values of the genetatguex(t), rotor
speedy,(t—1), and power outpuy,(t—1) are used to build 30 NN models for each
cluster. The best performing NN model is selected the prediction results for the test

data are shown in Table 4.10.

Table 4.10 Prediction performance based on thedlastered on the wind speed(t) of

(4.16).
Observec | Predictec
Input Mean
Space Nu(r)r}ber AF\,/ erage AF\,/ €rage | apsolute | STD of RMIea_n STD of
Clustered ower ower Error MAE elative MRE
b Clusters Output Output [KW] Error [%]
Y kW] [kW]
WS (t) 2 605.56 605.27 10.99 10.41 2.25 4.87
WSH*(t) 3 605.56 605.14 11.00 9.90 2.38 12.80
WSH*(t) 4 605.56 605.40 11.03 10.62 2.38 11.39
WSH*(t) 5 605.56 605.05 11.27 10.44 2.39 8.97
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The best prediction accuracy it attained kot 2as shown in bold in Table 10.
However, this prediction accuracy is worse than lthee performance for the vector
space (4.11)eported in bold in Table 4.7 with MAE = 10.98 k&@TD of MAE = 9.78
kW, MRE = 2.25 kW, and STD of MRE = 5.73 kW.

Though the wind speed directly contributes to tloever output generation,
clustering input space by the wind speed does eatefiis prediction accuracy. This
might be because the current wind spe@jlis not known and both estimations here
carry error impacting the prediction accuracy.

3. Clustering on Generator Torgugét)

Generator torque, (t) is the most significant predictor with the impoxtanof
94.28% among all 27 predictors (see Table 4.4)réfibee, it is used to cluster the input
space with the corresponding rotor spggé-1)and the power outpug (t-1) assigned to
each cluster.The test data is categorized according to the seahaster centroid. The

performance of the best NN models (out of 30 faheauster) is shown in Table 4.11.

Table 4.11 Prediction performance based on thealiaséered on generator torqug(t) .

Observec| Predictec
Input | Number Mean Mean
Space of Average | Average Absolute STD Relative STD
Power Power of of
Clustered| Clusters o Error Error
by utput | Output [KW] MAE [%] MRE
(kW] [KW]
GT(t) 2 605.56 605.29 10.74 9.44 2.23 6.56
GT(t) 3 605.54 605.37 10.79 9.50 2.23 5.96
GT(t) 4 605.56 605.14 10.58 9.11 2.16 5.48
GT(t) 5 605.56 605.25 10.58 9.24 2.15 4.47

The best prediction accuracy is attained Kef4as shown in bold in Table 11.
This prediction accuracy is significantly improveampared with the vector space of Eq.

(12) with MAE = 10.98kW, STD of MAE = 9.78 kW, MRE 2.25 kW, and STD of
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MRE = 5.73 % (see in bold in Table 7). This prédit accuracy is also improved over
the vector space of Eq. (10) with MAE = 10.72 kW,Bsof MAE = 9.01kW, MRE =
2.20 %, and STD of MRE = 5.84% (see in italic irblEs4.7).

4. Clustering on Generator Torqug(t) and Rotor Speed, (t—1)

Generator torque, (t) and rotor speed,(t—1) have a combined importance of
95.67% (94.28%+1.39%) of all the provided 27 predi (see Table 4.4). In this
scenario, they are used to cluster the input spéitethe corresponding power output
y,(t—1) assigned to each cluster. The test data is categoaccording to the nearest
cluster centroid. The performance of the best NNlehdout of 30 for each cluster) is

shown in Table 4.12.

Table 4.12 Prediction performance for clusterindddy(t) and RS (t-1).

Observec | Predictec
Input Number Average | Average Mean sSTD Mean
Space Of Power Power Absolute of Relative | STD of
Clustered| Clusters o Error Error MRE
by utput Output [KW] MAE [%]
[KW] [KW]

(GT(),
RS(-1)) 2 605.56 605.36 10.83 9.79 2.22 5.80
(GT(),
RS(-1)) 3 605.56 604.10 11.17 10.07 2.25 5.13
(GT(),
R(t-1)) 4 605.56 605.05 10.78 9.70 2.21 5.76
(GT(®),
RS(-1)) 5 605.56 605.10 10.80 9.63 2.25 6.51

The best prediction accuracy occurs kot 4as shown in bold in Table 4.12.
This prediction accuracy is significantly improveder the vector space of Eq. (12) with
MAE = 10.98 kW, STD of MAE = 9.78 kW, MRE = 2.25 k\@nd STD of MRE = 5.73 %
(see in bold in Table 4.7). However, the improvetred prediction accuracy is not stable

as when number of clusteks= 3, the prediction accuracy (see in italics in T&li® are
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worse than the vector space for Eq. (12) with MAE)-98 kW, STD of MAE = 9.78 kW,

MRE = 2.25 kW, and STD of MRE =5.73 % (see indbiol Table 4.7). Note that, best

prediction accuracy (see in bold in Table 4.1X)asbetter than the vector space for Eq.

(10) with MAE = 10.72 kW, STD of MAE = 9.01kW, MRE 2.20 % and STD of MRE

= 5.84% (see in italic in Table 4.7).

5. Clustering on generator torqug(t) , rotor speedy, (t—1) and power outpuy, (t—1)
Generator torque, (t) , rotor speed,(t—1), and the power outpuy, (t—1) have

a cumulative importance of 96.13% (94.28%+1.39%8%) of all 27 predictors (see

Table 4.4). In this scenario, they are used totefube input space. Each test instance is

labeled with the nearest cluster centroid. The remalb clusters varies from 2 to 6. The

performance of the best NN models (out of 30 faheauster) is shown in Table 4.13.

Table 4.13 Prediction performance for clusterindgddyt), RS(t-1) and PO(t-1).

Observed | Predictec
Mean Mean
Input Space Nu(r)r;ber Alz\)/g\:\?gre Alz\,lg\:\‘?egre Absolute S(;I;D Relative S(')I’fD
Clustered by | ysters| oOutput | Output '[ig\‘,’]r MAE E[g/[gf MRE
[kw] (kW]
(GT(t), RSt-1),
PO(t-1)) 2 605.56 605.10 10.83 9.65 2.24 6.74
(GT(t), RSt-1),
PO(t-1)) 3 605.56 605.04 10.73 9.30 2.16 4.71
(GT(t), RS(t-1),
PO(t-1)) 4 605.56 605.30 10.72 9.33 2.19 5.17
(GT(t), RSt-1),
POt-1)) 5 605.56 605.22 10.76 9.55 2.21 5.69
(GT(1), RS(-1),
PO(-1)) 6 605.56 605.41 10.79 9.28 2.31 4.89

The best prediction accuracy far=4is shown in bold in Table 4.13. This
prediction accuracy is improved compared with vesfzace for Eq. (4.11) with MAE =

10.98 kW, STD of MAE = 9.78 kW, MRE = 2.25 kW, a8dD of MRE =5.73 % (see in
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bold in Table 4.7). However, this prediction a@ay (see in bold in Table 13) is no
better than the one for the vector in Eq. (4.9hwWHAE = 10.72 kW, STD of MAE =
9.01kW, MRE = 2.20 % and STD of MRE = 5.84% (se#dlic in Table 4.7).
6. Description of the Clustered Input Space

The most promising scenario for clustering the tnppace is based on the
generator torque,(t) . The number of cluster& =4 produces the best prediction

accuracy amonk = 2,..., 5. The centriods for the training data setsshown in Table

4.14.
Table 4.14 Clustering centriods for training dagt s
Average
: Instance
Cluster Distance Number of
No. GT(t) PO¢) PO¢-1) | RS¢-1) to the Instances Per((f;;]tage
Centroic 0
1 13.89| 112.84 | 115.13 12.17 0.05 8534 28.12
2 31.36| 342.67 | 344.72 14.67 0.04 11993 39.51
3 48.28| 658.93 | 665.12 17.99 0.06 6683 22.02
4 84.56 | 1258.93| 1240.31 19.78 0.09 3143 10.35

Four clusters of the training data are illustratedTable 4.14. The generator
torquex,(t) is used to cluster input space kyneans algorithm. The clustering results
represent four levels of the generator torqué) from low to high with the
corresponding observed power outpit) . Clusters are arranged by the observed power
output y,(t) from low to high, e.g., cluster 1 contains datahwihe lowest generator
torque x,(t) and lowest observed power outgit) ; while cluster 4 includes data with
the highest values of the generator toropi) and the observed power outmt) .

Instances of test data are categorized accordinteacluster centriods of the

training data using the algorithm in Table 4.3.eAfall instances are categorized, the
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cluster centriods of the test data are measureaesage values through each cluster for

each parameter state (see equation (4.17)).

N;

2.PS
TestClusterCentriqq = —= N (4.17)

where PS is the j" parameter statd,< j <3; N,is the number of instances of tie
cluster,1<i < 4.

Table 4.15 illustrates four cluster centriods & thst data set.

Table 4.15 Clustering centriods for the test data s

Average Instance

C:tlxgter GT(@®) | POf) | POt-1) RIS)(t- Distangcg l\ll:sn::ﬁég Percentage
' to Centroid (%)
1 17.55| 148.87 | 164.4 | 12.4 0.05 715 451
2 32.21| 357.51| 362.6 | 14.93 0.04 6107 38.51
3 49.95| 693.19 | 706.28 | 18.32 0.05 6910 43.57
4 79.79| 1186.54| 1132.69| 19.72 0.09 2127 13.41

Four clusters of the test data set are illustratetiable 4.15 for the parameters of
Eq. (4.11), the observed power outpyt) , average distance to centriods, and the
number of instances in each cluster. The simildrétween training and test clusters is
measured by the relative distance between theetlgsntriods of the training and test
data for each parameter state. A shorter relatigtartce between cluster centriods

implies greater similarity between them. The rgkatiistance metric is defined in (4.18):

| TrainingClusterCentriod TestCIusterCentngtibo% (4.18)

Relative Distance — -
TrainingClusterCentriod
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The relative distances between cluster centriodb@training and test data sets

for each predictor are shown in Table 4.16.

Table 4. 16 Relative distances between clusterioestfor four predictors.

Cluster No.| GT(t) POt) | PO¢-1) | RSt-1)
1 26.35 | 31.93 | 42.80 1.89
2 2.71 4.33 5.19 1.77
3 3.46 5.20 6.19 1.83
4 5.64 5.75 8.68 0.30

The relative distances between the cluster cemtradcthe training and test data
sets are shown in Table 4.16. The distance valuessponding to clusters 2, 3 and 4 are
smaller than that of cluster 1. Higher similarigm@ller distance) between the training

and test data sets is a good indicator of a betestiction performance.

4.3.3 Model Extraction
1. Cluster One
In this section, test results by five data-minidgoathms are discussed. The
tested algorithms include: the Random Forest Algori (RFA), Boosting Tree
Algorithm (BTA), Support Vector Machine (SVM), NalrNetwork (NN), and a Neural
Network Ensemble. The test performance of eactritthgo for cluster 1 (of Table 4.15)

is shown in Table 4.17.
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Table 4.17 Test performance of five data-miningatgms for cluster 1 data.

Observec Predictec Mear Mear
Algorithm Average Average Absolute S(')I’fD Relative S(;I;D
9 Power Output Power Output Error MAE Error MRE
[kW] [kW] [kW] [%]
RFA 148.87 148.40 9.62 9.84 6.46 88.75
BTA 148.87 148.86 6.12 477 551 11.54
SVM 148.87 164.40 6.48 4.93 4.35 24.46
NN
(Ensemble 148.87 148.63 6.25 4.95 4.20 25.62
NN 148.87 148.57 6.21 5.06 5.88 24.21

The average observed power output for clusterTalvie 4.17 is 148.87 kW. The
previous research has shown that predicting pow#pub at low levels with a NN
resulted in large errors, e.g., when the obsenadkep output was less than 10 kW, the
relative error was as high as 300%, or even 10008te that the errors reported in Table
4.17 for low values of power are smaller.

Of all algorithms in Table 4.17, the Boosting Tredgorithm (BTA)
outperformed than both the NN and NN (Ensemblejhenfour metrics (MAE, MRE,
STD of MAE, and MRE) as indicated in bold in Tallel7. Therefore the BTA is
selected for constructing the model based on cldstata. The learning rate af=0.3

has produced the best prediction accuracy.

2. Cluster Two

The test performance for the five data-mining atpars for cluster 2 data (see
Table 4.15) is shown in Table 4.18. As illustratedlable 4.18, the average observed
power output for cluster 2 is 357.51 kW. The besfgrmance (see in bold) is attained
by the NN selected of 30 NNs.
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Table 4.18 Test performance of the five data-mirmilggprithms for cluster 2 data.

Average Average

. Observed Predicted Mean STD Mean STD

Algorithm Power Output| Power Output Absolute of Relative of
(W] [KW] Error [kW] | MAE | Error [%] | MRE
RFA 357.51 356.86 24.40 22.39 6.45 5.82
BTA 357.51 357.53 11.16 10.07 3.25 2.96
SVM 357.51 362.60 9.75 7.92 2.83 2.28

NN

(Ensemble 357.51 357.29 8.98 7.70 2.59 2.17
NN 357.51 357.24 8.94 7.62 2.58 2.14

3. Cluster Three
The test results of the five data-mining algorithforscluster 3 data (see Table

4.15) is shown in Table 4.19.

Table 4.19 Test performance of the five data-mirlggrithms for cluster 3 data.

Observec Predictec

_ Average Average Mean STD Mean STD

Algorithm Power Output] Power Output Absolute of Relative of
Error [kW] | MAE | Error [% MRE

[kVV] [kVV] [ ] [ 0]
RFA 693.19 693.60 38.79 43.69 5.22 5.57
BT 693.19 692.96 12.04 10.48 1.76 1.58
SVM 693.19 706.28 13.12 10.40 1.95 1.62
NN

(Ensemble 693.19 692.42 11.87 10.22 1.75 1.54
NN 693.19 692.35 11.82 10.14 1.74 152

The average observed power output of cluster P&1® kW (Table 19). The
best prediction accuracy is accomplished by at Njdrahm (the best one among 30

NNs tested).
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4. Cluster Four
The test performance of the five data-mining alfpons on cluster 4 data (see in

Table 4.15) is provided in Table 4.20.

Table 4.20 Test performance of the data-miningrétyos for cluster 3 data.

Observec Predictec

_ Average Average Mean STD Mea_n STD

Algorithm Power Output| Power Output Absolute of Relative of
Error [kW] | MAE | Error [% MRE

[kV\/] [kV\/] [ ] [ 0]
RFA 1186.54 1185.95 21.87 20.99 1.82 1.66
BT 1186.54 1186.25 13.96 11.75 1.19 1.02
SVM 1186.54 1132.69 14.07 11.03 1.21 0.99
NN

(Ensemble) 1186.54 1187.14 12.90 10.77 111 0.96
NN 1186.54 1187.03 12.93 10.77 1.11 0.96

Table 4.20 shows the average observed power oofli86.54 kW. The best
performance has been produced by the NN Ensemipeithim with 5 (out of 30) best

performing NNs.

5. Overall Results

The best prediction accuracy results for the fousters are summarized in Table
4.21.

The average prediction accuracy reported in Tal?d 4as been significantly
improved compared with performance based on theespaector in Eq. (4.11) with MAE
=10.98 kW, STD of MAE = 9.78 kW, MRE = 2.25 kW,a8TD of MRE = 5.73 % (see
in bold in Table 4.7). The average prediction aacy is also higher than the one for Eq.
(10) shown in Table 4.7 (MAE = 10.72 kW, STD of MAES.01kW, MRE = 2.20 % and
STD of MRE = 5.84%)).
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89

Average Average

Cluster Observed Predicted Atl;/lealm STfD RMIea_n STfD Algorith

No. Power Output| Power Output E rrosro[lg\s\?] M?AE E r?o?t[lﬁ M(I)?E gorithm

[kwW] [kwW] °
Cluster 1 148.87 148.86 6.12 4.77 5.51 11.54 BT
Cluster 2 357.51 357.24 8.94 7.62 2.58 2.14 NN
Cluster 3 693.19 692.35 11.82 10.14 1.74 1.52 NN
NN

Cluster 4 1186.54 1187.14 12.90 10.77 111 0.96 (Ensemble
Average 605.56 605.14 10.57 9.08 2.14 3.08

4.3.4 Comparative Study
1. Comparison of Four Typical Scenarios

Four typical scenarios from Sections 4, 5, andeGcampared.

Scenario A 3 model inputs (generator torgqugt) , rotor speedy,(t—1) and
power outpul, (t—1)) are used by NN model. The best performing NNastBO NNSs is
selected.

Scenario B 27 model inputs (see Eq. (10)) are used by a Nddeh The best
performing NN out of 30 NNs is selected.

Scenario € 3 model inputs (generator torgugt) , rotor speedy,(t—1) and
power outpul, (t—1)) are used by a NN model. Input space is clusteyeithe generator
torque x, (t) with the k-means algorithm. A NN algorithm is used to extradiction
model for each cluster. For each extraction, 30 l[disproduced and the one with best
performance is selected.

Scenario D 3 model inputs (generator torgugt) , rotor speedy,(t—1) and

power outputy,(t—1)) are used by data-mining models. Input space usteted by
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generator torque, (t) using thek-means algorithm. For each cluster, an algorithrin wi

the best prediction performance is selected taekthe model (see in Table 21).

Table 4.22 lists the prediction accuracy resulteesf data for the four scenarios.

Table 4.22 Comparison of test results.

Average Average Mean Mear
Scenario Observed Predicted Absolute S(;I;D Relative S(')I’fD
Power Output Power Output Error MAE Error MRE
[kw] [kwW] [kw] [%]

A 605.56 605.17 10.98 9.78 2.25 5.73

B 605.56 605.56 10.72 9.01 2.20 5.84

C 605.56 605.14 10.58 9.11 2.16 5.48

D 605.56 605.14 10.57 9.08 214 3.08

Scenario D produces the best prediction accuracynast metrics (MAE, MRE,
and STD of MRE) in Table 4.24. The STD of MAE rartke second best and it is only
slightly worse (by 0.07kW) than the ones produece8denario B.

The results reported in this research and parthynsarized in Table 4.22 lead to
the following conclusions:

(1) Prediction accuracy improves as the numbengiits increases

As indicated by Scenario A and B, prediction accyiienproves with the increase
in number of predictors. For example, whedecrease from 27 to 3, MAE increases 0.26
kW based on an average observed power of 605.560kV¥5860 test instances. The
overall absolute error increased by 4123kW.

(2) Prediction accuracy improves when clusterirgitiput data by the generator torque

X,(t) is used
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Clustering input space by the generator tosq(®, reduces MAE by 0.4 kW
(compared with the base performance of vector spaé. (4.12) shown in Table 4.7.
This is for the average observed power of 605.56 fkWW15860 test instances. The
overall absolute error is reduced by 6344 kW.

(3) Extracting models from partitioned data imprepeediction accuracy

Each of the four models in Scenario C was extrabieé NN algorithm (one
model per cluster). In Scenario D models were etedhfor each cluster using the best
performing algorithm. For example, when the obsgrpewer output is low, the NN
algorithm generates rather large error. The BTArkaslted in a model with small MAE,
MRE, and STD of MAE. The improvements in the STD MRE are particularly
impressive. For Scenario C and D, the followingiayements have been accomplished:

MAE by0.01 kW, MRE by 0.02%, STD of MAE by 0.03,a8TD of MRE by 2.4%.

2. Benefits from the Proposed Approach
The proposed approach has a number of benefitading:
(1) Higher prediction accuracy is achieved by usewer parameters as model inputs.
High prediction accuracy is attained for just 3utgpwhen the input space is
clustered by the generator torgugt) . The base line is the performance for vector of 27
predictors in Eq. (4.9) without clustering the ihgpace.
(2) Shortened training time is achieved due tddllewing three reasons:
(@) Using smaller number of input parameters;
(b) Clustering data produces subspaces ewtlerf instances included
in each input space;
(c) Training can be accomplished in paralleich offers
computational benefits.

(3) The proposed model is more reliable.
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Using fewer model inputs enhances reliability. artggular, if n parameters are
selected as inputs, the probability of not getangoor (in error) prediction is expressed

in (4.19).

p(prediction not in error:)ﬁ @ p (inputinmr)) (4.19)

i=1

where p(input in errorlis the probability of an erroneous input. Assumiing probability
distribution function is uniform and equal to 1%henh for k = 3,
p(prediction notin error @ 0.01¢ 0. : Note that for n=27 ,

p(prediction notin erro’x @ 0.0%)= 0., which is a significant decrease.

(4) The proposed models are customized

Training data is clustered into mutually separalbspaces. The most suitable
data-mining algorithm is applied to the data ofheatuster. This makes the models

specialized to the data included in the varioustels.

4.4 Summary

Predicting future production of wind power at lowna speeds is challenge.
Estimates of power at low levels are extremely ¢naate. This paragraph proposed a
clustering-based method for power prediction at leind using 10-s data. Numerous
data mining algorithms were developed for low lgwelver prediction, including neural
networks (NNs) that dominate in wind energy indusirhe NN models produce large
errors when it comes to predicting power outpuivallevels.

The approach proposed in the paragraph takes adyganata subspaces that led

to accurate predictive models. The successful teeseported in the paragraph were
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accomplished in a number of steps. First, signiicparameters were selected by
physics-based equations and data-mining algoritirhis parameter selection showed
that using larger number of model inputs resulited prediction accuracy gain. Second,
training and test data sets were clustered acaptdiriive different criteria (scenarios).
The clustering algorithm used here waskimeeans algorithm. Third, for the data in each
cluster the most suitable algorithm for buildingawer prediction model was identified.
The computational results reported in the paragrdpmonstrated that the
proposed model customization approach producedraecprediction models using a
small number of input parameters. The latter mlediimportant side benefits, including

reduced computational effort and increased religbil
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CHAPTER 5.
DYNAMIC CONTROL OF WIND TURBINES

5.1 Introduction

Reduction of operations and maintenance costs][i4 key to the expansion of
wind industry destine to grow in the next decaddsDevelopment of control solutions
[38, 77, 78, 43] is a valid approach to reduceehassts. A well designed wind turbine
control system should maximize not only the energgtured from the wind but also
extend the lifetime of turbine components, e.g, gearbox. It is known that smoothing
the turbine power output is important in its inegyn with the electricity grid. All
operations and maintenance considerations have fardperly managed. For example,
for a high wind speed and low electricity demandjird turbine can be operated so that
smoothing the rotor speed and generator torquentes@ priority. Wind turbine control
technology is relatively new, and opportunitiessexo improve turbine performance in
the presence of operations and maintenance contstradn intelligent wind turbine
control system increasing competitiveness of winergy is needed.

In this section, an intelligent system for contodlwind turbines is introduced.
Unlike the research reported in the literature 38;45, 69, 78], where wind turbine
models are obtained from the first principles aretodynamics, in the proposed
intelligent control system, data mining algorithegract the turbine models from the
process data, i.e., SCADA (Supervisory Control &ada Acquisition) system. A time
series model [9, 24, 75] is used to predict wingdes) and MPC (Model Predictive
Control) optimizes the process variables of wintbines.

The model considered in this section considers Visgghted objectives. The
weights are adjusted for the eight typical scemsadefined by wind conditions and

operational requirements.
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5.2 Data Description and Methodology for Dynamic

Control of Wind Turbines

5.2.1 Data Description

Modern wind turbines are equipped with sensors camtrol and monitoring
purposes. The data sampling frequency can be tgh, (milliseconds), however, for
specific applications, the high frequency datasisally aggregated (e.g., averaged) over a
certain time period (e.g., 10 seconds, 10 minutés)present, the 10-minute data
standard is widely used in industry. Analysis ofriibiute data does not allow observing
important details. Figure 5.1 through Figure 5.8vstthe power curves of a 1.5 MW
wind turbine when it is operating between the cutind the rated wind speed. The power
curve shown in Figure 5.1 is scattered though th&us of the wind turbine and is
considered to be normal. It can be observed tlaspinead of the points which create the
power curve increases around the rated wind spées.increased variability translates
into variable power output and results in loads toald be hazardous to the drive train

components.
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Figure 5.1 Power curve of a 1.5 MW wind turbine I0rsecond average data.
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Figure 5.2 Power curve of a 1.5 MW wind turbine Teminute average data.

Averaging the 10-second data over the 1-minute Hataresulted in a power
curve with a reduced spread of the data points [Bgere 5.2). For the 10-minute
average data (the industry standard), the datagtmhow a typically displayed pattern
(see Figure 5.3). Note that the scattered gragphigare 5.3 is due to insufficient number

of data points included in the 10-second data set.
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Figure 5.3 Power curve of a 1.5 MW wind turbinetfte 10-minute average data.
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The results presented in Figure 5.1 through FiguBindicate that the wind
turbine control system considered in this reseaedds to be improved. An intelligent
wind turbine control system is discussed and iaistd with the data from a 1.5 MW
wind turbine. Table 4.2 lists the process pararsaised in the study.

Two major controllable parameters (i.e., the patamseoptimizing the energy
conversion process) are the blade pitch angle lmmgénerator torque. In addition, three
response parameters of interest to this reseaecthamwind speed, rotor speed, and wind
turbine power output. They are important indicatofshe energy conversion process.
The rotor speed and the generator speed are haghthglated, and in fact they are
modeled by a linear function. In this paragraple, ribtor speed is selected as a response
parameter to be included in an objective functiBapid changes in the rotor speed
accelerate the failure of its mechanical components

The data used for this case study was collected sampling interval of 10
seconds for a day. This data set satisfactorilyesamts the data generated at different
turbines across many time horizons. The wind speetkd in the interval [2.97 m/s,
13.16 m/s]. After initial denoising (e.g., removihgbine down time, wind speed below
the cut-in speed, and the wind above the cut-oaedp 2054 valid data points were
considered. The data for the wind speed betweeoutigm and the cut-out speed ranges
was considered in particular because this opewti@gion presents a major opportunity
to optimize the wind turbine power generation psscélhe distribution of data used in

this paragraph is shown in Figure 5.4,
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5.2.2 Data Driven Intelligent Wind Turbine Cont®jstem

In this paragraph, an intelligent wind turbine ecohsystem is developed using
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The first module extracts the process and the tsmees models from the
historical SCADA and wind data. These models ardatgd once their performance
degrades, which is accomplished by comparing thdetfi® predicted values with the
actual measurements recorded by SCADA and anemmsnete

A time series model predicts wind speed at shart tintervals, which can be
traced back to [13], where a linear wind speed tsages model was built. Once an
accurate wind speed time series model is obtaiméd turbine is optimized with a
model predictive control algorithm. Although seVed#dferent algorithms are compared,
such as the boosting tree regression [66, 67]atinegression, and neural network [81,
90] the wind speed time series model (5.1) is lyila neural network ensemble, and the

predictor is selected using the genetic wrappercgmh [71, 73].

v(t) = g(M(t-1), (t- 2), \(t- 6)) (5.1)

The process models (5.2) and (5.3) are built bgwal network algorithm [76,
32]. Since the sampling rate is 10 seconds, andrtieedelay of the wind turbine control

system is not longer than 20 seconds, one pregiais is sufficient in building models.

yo(t) = f(ya(t=1), % (1), % (t= 1), %, (1), % (+ 1), v(t), (- 1), (5.2)
Yo (1) = f,(yo(t=1), % (1), % (t= 1), %, (1), % (+ 1), v(t), (t 1), (5.3)

The second module includes the MPC (model prediatontrol) component and
an EC (evolutionary computation) solver. The MPCdeids formulated based on the
extracted models and the current wind turbine stasiwell as the wind speed. Then
current wind conditions and operational requirerseate used to determine the
importance of the optimization objectives of the ®1model (here weights associated

with the MPC objective functions). Updating processdels is an important issue in
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MPC control; however, this paragraph does not faruhis topic. Rather it emphasizes
identification of various optimization objects aodiog to different wind conditions and
operational requirements.

Control systems in the presently available windbings usually follow one
control strategy, i.e., when the wind speed is betwthe cut-in and rated one, the power
output is optimized by following the maximum thereoptimal power coefficient.
Actually there are other factors to be consideredides maximization of the power
output. For example, smoothing the power outputotor speed variation is important
depending on the wind conditions and operationaladels. An intelligent control system
should provide more options to control a wind tnebbased on the wind conditions and
operational requirements. Five different objectivae considered in optimizing the

energy conversion process as shown in (5.4).

J= \A‘ft‘]Power+ V\é ‘]Rotor+ V\é ‘JP_ ramp+ \M ‘]G_ ramﬁ' Vg ‘]Pitcrl ram (54)

where: J,.. IS @ function to minimize the distance betweenpbweer

output to its upper limit and therefore maximizihg power output,

Jrotor 1S @ fuNction to minimize rotor speed ramp,

Jp_ramp 1S @ function to minimize power output ramp,

Jo_ramp 1S @ function to minimize generation torque ramp,

Jpieh_ramplS @ fUNCtion to minimize pitch angle ramp.
The weightsw, w,, w, w;, wg in (5.4) are assigned different values dependimg o

the priority assigned to the corresponding objectivach weight is in the interval [0, 1],

andw, +w, + ws+ w,+ wy=1. The MPC model is defined in (5.5):

min J (\M.' W, W, Wy, VG, ‘l’ower ' ‘l?otor' ‘]P_ ramp’ ‘]G_ ramp ‘]Pitcrl ramyg (55)
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It is worth mentioning that minimizing
J(W, Wo, Wa, Wy, W, Boer Jotor b ramp o ramp Jpich ram) 1S @ Challenge as the objective
function and the constraints are nonlinear. Toestis type of optimization problem, an
evolutionary strategy algorithm is proposed [749wever, this paragraph focuses on

analysis of the weights for different scenariobeathan the solution of the function.

5.3 Industrial Case Study on Dynamic Control of @in

Turbine
5.3.1 Adjusting Objectives Based on Wind Conditiand
Operational Requirements

In this paragraph, the following three factors, dvspeed, wind turbulence, and
electricity demand, are considered in deriving tioatrol priorities (i.e., the weights
W, W, W, Wy, V).

Wind turbulence is an important metric describing tlegree of variability of the
wind speed. If the current wind speed is highlyiatale, maximizing the power capture
may significantly damage the turbine‘’s mechaniagainponents. An intelligent wind
turbine control system should optimize the conpradrities based on wind turbulence.

1. Wind turbulence intensity
Turbulence intensity is a measure of the overa#llef wind turbulence [30], and

it is defined in (5.6).
=2 (5.6)

t
Vi

where s, is the standard deviation of the wind speed \ianabout the mean wind
speed v at time stamp, andv is the mean wind speed over a certain interveire t .
The mean wind speeg over n consecutive sampling data points is defined in
(5.7):
- 1 &
Vi =— Z V(i) 51)
NistTha
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wheren is the number of consecutive data points.

The standard deviatios, is computed as follows (see (5.8)):

o, = \/ni_lilztn:ﬂ(vari—ﬁr)z 5.8)

wherevar is the variation of wind speed at timeand is computed from (5.9):
var = Vv(t)- v (5.9)

wherevar, is the mean wind speed variation at timas shown in (5.10):

t

var _1 > vay 18)

n i=t-n+1

The wind turbulence intensity (5.6) implies thatreat wind turbulence intensity
at timet is estimated based on historical data points.raAdtively, the wind turbulence
intensity could be computed based on the datarwdatairom the time series prediction
model.

In this paragraph, the turbulence intensity is coteg over a 1l-minute time
horizon (i.e., 6 consecutive 10 second data poimts) 5-minute time horizon (i.e., 30
consecutive 10 second data points).

Figure 5.6 shows the distribution of turbulenceemsity computed over a 1-
minute time interval. According to Figure 5.6,is generally smaller than 0.274 most of

the time, and the mode of is around 0.069.
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Figure 5.6 Turbulence intensity distribution (1-oni@ time intervals)

In comparing the distributions of turbulence inignsalculated from one minute
to five minute time intervals, the common trenaliwious. For example, most turbulence
intensities are between 0.03~0.36, and the highegtiency occurs around 0.1, though
there are some small deviations.

For an intelligent wind turbine control system, inate data reflects resolution,
and it is suitable to classify the current turbekerstatus. In this paragraph-0.06 is
used as the threshold to distinguish between higiutence intensity and low turbulence
intensity. Note that this threshold value was dithbd based on the specific data sets.
More research could be conducted in the futurentbd better classification rule.

2. Wind conditions
Wind speed is an important factor to be considesethe intelligent control

system. For control purposes, three regions arallystonsidered [42]:
1) Wind speed smaller than the cut-in speed.
2) Wind speed larger the rated speed.
3) Wind speed that is between cut-in and the rateddp

To optimize the wind turbine operations, this paspd suggests further

classification of the wind speed region betweendiein and the rated wind speed. In
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this way, more precise control strategies can bglemented. The data used in this

paragraph is collected from a 1.5 MW turbine witht-in speed of3.5sm/s and rated

speed ofl2.5m/s. The speed of m/sis used as an additional threshold category (see

Figure 4) to define the following four wind speestsarios, seen in Table 5.1.

Table 5.1 Classification of four wind speed scevsari

Wind Speed Characteristic Turbulence Intensity Characteristic
N[ W/ | Min | Ave | Max | Percentage| b | urbur | Tubul | Turbuience
" | Speed speed| Speed| speed higher S5, || TR |\ TR | iche ihan
[m/s] | [m/s] | [m/s] | than 7 m/s y y y 0.0¢
Hi
1 ?_n/ 7.43 | 9.63 | 12.22 | 100.00% 0.03 0.06 0.16 54.84%
gh
Hi
2 ?{' 7.02 | 958 | 11.66 | 100.00% 0.02 0.05 0.09 43.33%
ow
Lo
3 \|/_|v{ 3.75 | 588 | 8.47 17.24% 0.04 0.16 0.32 89.66%
gh
Lo
4 \Iivé 5.29 | 6.11 | 6.70 0.00% 0.01 0.03 0.06 4.17%
w

Table 5.1 illustrates the classification of windhddions according to wind speed

and turbulence intensity. The threshold of windespis 7m/s and threshold of turbulence

intensity is 0.06. Take scenario 1 for examplealathe wind speed is higher than 7m/s,

this period of wind condition is defined as higmdispeed period. As 54.84% turbulence

intensity is higher than 0.06 and the maximum @iad 0.16, the scenario is defined as

high turbulence intensity. Similarity, scenarios2characterized as high wind speed and
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low turbulence intensity. Scenario 3 is characestizas low wind speed and high
turbulence intensity and Scenario 4 is low windespand low turbulence intensity.
3. Electricity demand

Electricity demand is important in turbine contbelcause when it is low, there is
no need to maximize the power output, and moraiadie should be given to smoothing
the power output. On the other hand, if the demaniigh, more emphasis should be
given to maximizing the power output. In this paegdn electricity demand (i.e., low or
high) is also considered as a factor in classifyirggoperational scenarios.

4. Classification of operational scenarios

Table 5.2 Scenario classification according to watatus and electricity demand.

s ) Turbul Weight
cenario , urbulence
Number Wind Speed Intensity Demand
W W, Ws Wy Ws
1 High (1 > High 0.4 |0.15| 0.2 | 0.2 |0.05
0.06)
2 High (7 ~ 12.5 Low 0.2 | 0.25| 0.25| 0.25| 0.05
3 m's) High | 0.6 | 0.1 |0.15|0.15 0
Low (I <
4 0.06) Low 0.1 | 0.25|0.25|0.25| 0.15
5 High (1 > High 0.55 | 0.15/ 0.15/0.15| O
0.06)
6 Low (3.5 ~ 7 Low 0.2 | 0.25| 0.25| 0.25| 0.05
m/s) :
7 Low (I < High 06 | 01| 01]01] 01
8 0.06) Low 02 | 02| 02]02] 02
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Eight operational scenarios are discussed in thiagraph according to the
turbulence intensity, wind speed, and electricéyndnd. Table 5.2 shows the details of
various scenarios and weights used in model (5&ch scenario represents a
combination of weights, which differentiate the ion@ance of the five objectives, where
W+ W, + W+ W+ we=1 and w, w,, ws, w,, v are between 0 and 1 (see Table 5.3). The
weight combinations are derived based on the heurgomain knowledge. More

research is needed to algorithmically generateetivesghts.

5.3.2 Computational results

The computational results reported in this secéma based on the dynamic
equations extracted by the neural network algoritomd the wind speed time series
model built from a neural network ensemble. The MmGdel (5.5) is solved by an
evolutionary strategy algorithm for constrainedimjation problems with certain fixed
parameter settings (i.e., the population sizectele pressure). For each scenario, during
a fixed time period, model (5.5) is solved to fithed optimal pitch angle and generator
torque settings for the starting time stampor the next sampling time-1, model (5.5)
is solved again based on the previously found agtoantrol settings at timig(i.e., pitch
angle and generator torque). This simulation comsnuntil the fixed time period ends.
Then the optimized wind turbine status is compavét the original one for that fixed
time period.
1. Summary of optimization results

Table 5.3 illustrates the optimization results ofver output for computational
eight scenarios. The power output has increaseddh of the scenarios listed in Table 4,
except scenario 4 (shown in bold), caused by thedlectricity demand. STD (Standard
Deviation) of power output implies the quality asthoothness of power output. Five

optimized scenarios have smaller values of STDowfgy output than the original ones.
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In scenarios 5, 7 and 8 of Table 5.4 the powerityualdiminished in order to satisfy the

electricity demand (shown in bold).

Table 5.3 Summary of power output generation.

Original i .- .
Scenario Average A Optlmléed OFglglnaI 8TD of (?ptlmlzed STD
Number | Power Output verage Power ower Output | of Power Output
[KW] Output [kW] [kw] [kw]
1 1278.36 153.80
795.01 :
2 1098.36 171.99 87.24
3 1427.70 125.61
907.60 .
4 554.90 228.90 55.69
5 372.62 226.93
200.40 139.82
6 271.72 398 153.23
7 535.55 64.58
275.00 .97
8 498.89 30 62.51

Table 5.3 illustrates the smoothness of rotor spédade pitch angle, and
generator torque. Optimization has resulted in shevovalues of rotor speed in eight
scenarios. Comparing with the original blade pitfgle and generator torque, the
optimized values are smoother in high wind speeshagdos (1-4). At low wind speed
(scenarios 5 through 8 of Table 5.5), the smootheédblade pitch angle and generator
torque (shown in bold) has diminished to benegtpower output.

The details of two illustrative operational scenard and 7 of Table 5.4 are

discussed next.
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Table 5.4 Summary of standard deviations for farameters.

Scen Cé(ll_gsn(;l Optimized Original Optimized Original Optimized
ario Rotor STD of STD of STD of STD of STD of
Num Speed Rotor Speed Blade Pitch| Blade Pitch | Generator Generator
ber [ rg m [rpm] Angle [°] Angle [°] | Torque [Nm]| Torque [Nm]
1 0.24 191 881.82
2 0.25 0.10 4.39 2.47 1152.89 563.29
3 0.27 3.96 747.91
2 0.37 0.0 3.57 215 1470.40 40058
5 1.69 454 1614.48
1.79 4.09 934.38
6 1.39 4.34 34.3 1142.18
7 0.30 2.36 438.80
3 0.82 0.40 0.00 072 207.19 426,31

2. Operational scenario 4: High wind speed, lovbualgnce intensity, and low electricity
demand

Scenario 4 is concerned with high wind speed, lotlulence intensity and low
electricity demand. As electricity is demand lowis set as 0.1y,, w; andw, are set as
0.25, w; is set as 0.15 (see Table 3). In this case, thenzetd power output is lower but
much smoother than the original one. Due to lowtelgty demand, the increase of
generation is diminished to improve the power qualn the same way, rotor speed,
generator torque and blade pitch angle are smoaotfied optimization. Figure 5.7
through Figure 5.10 show the results of optimizatié the power output, rotor speed,

generator torque, and pitch angle.
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Figure 5.10 Original and optimized pitch angleha interval

“1:05:40 PM” to “1:10:30 PM”.

3. Operational scenario 7: Low wind speed, low uilehce intensity, and high electricity

demand

Here is the situation of low wind speed, low tudmde intensity and high

electricity demand. As wind speed is low, the oradilow power output cannot satisfy

the high electricity demand. So higheris needed. In this case, is set as 0.6y,, w;,

w, and w, are set to 0.1. Figure 5.11 through Figure 5.1d4wslihe results of

optimization of power output, rotor speed, pitclglanand generator torque.
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Figure 5.11 Original and optimized power outputhe interval

“4:36:20 AM” to “4:40:10 AM”.
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Figure 5.12 Original and optimized rotor speechim interval
“4:36:20 AM” to “4:40:10 AM”.
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Figure 5.13 Original and optimized generator torouthe interval
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Figure 5.14 Original and optimized pitch angleha interval
“4:36:20 AM” to “4:40:10 AM".

As presented from Figure 5.11 to Figure 5.14, teegated power has increased
at the expense of its quality to satisfy the eleityr demand. Rotor runs smoother after
optimization. The original generator torque does vary much and the original blade
pitch angle is constant for the range of wind speeahsidered in this scenario. The
optimized blade pitch angle and generator torques iasulted in increased the power
output.

5.4 Summary

In this paragraph, an intelligent system for cdmfavind turbines was presented.
The system integrated data mining, evolutionary matation, predictive control, and
time series approaches. A time series model fatigiien of wind speed was proposed.
A dynamic function was built with five different vghts determined by various
operational scenarios. The system modifies therababjectives by observing the wind
conditions and electricity demand. Wind conditizrese characterized by the wind speed
and wind turbulence intensity. Eight scenarios vekr#ned based on the wind conditions

and the electricity demand.
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Each scenario was illustrated with computationaults. The original wind
turbine status and the optimized ones were compgareimulation. The results produced
by the intelligent control system are better thawse of the current wind turbine control
system. For turbulent wind, the intelligent contsystem smoothed the power output,
generator torque, and rotor speed without compiiagthe electricity demand.

Further research should focus on automating thghwegjeneration based on wind
conditions and electricity demand. Other objectivesld be considered by the predictive
control model to explore other aspects of the vandrgy conversion process. Additional
research is needed to improve the prediction acguoh the wind speed, which is of
importance in the proposed approach. Denoisingnigals could be applied to enhance

the data quality.
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CHAPTER 6.
THE PREDICTION AND DIAGNOSIS OF WIND TURBINE FAULTS

6.1 Introduction

Wind power is key to meeting the planned targetsthaf carbon emission
reductions and ensuring diversity of energy sugplyrces [82]. The growing interest in
wind energy has led to the rapid expansion of viamohs [83, 84].

The growth of wind power has increased interestthe operations and
maintenance of wind turbines. As wind turbineslacated at remote locations that may
be difficult to access, their maintenance beconmegssue. Thus, condition monitoring
and fault diagnosis of wind turbines are of higiopty.

This section proposes a methodology for system-leudt diagnosis in wind
turbines using a data-driven approach. The faldted data is analyzed at three levels.
The existence of a status or a fault is predictexv€l 1), the category (severity) of the

fault or the status is determined (Level 2), arelgpecific fault is predicted (Level 3).

6.2 Data Description

The data available for the research reported s paragraph has been collected
by SCADA systems at four wind turbines (Turbinel'irbine 2, Turbine 3, and Turbine
4). For each turbine, two separate sets of datae weovided: SCADA data and
status/fault data. Both data sets were collectgetabd of three months from 01/04/2009
to 30/06/2009. The details of the data are disclesgt.

6.2.1 Data Description and Pre-processing
1. SCADA data
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The SCADA data for four wind turbines was collectcb-minute intervals. The
nearly 25000 records (instances) collected for ¢adine on over 60 parameters have
been grouped into four categories.

1) Wind parametersWind parameters are the direct measurements ofviie
(e.g., wind speed, wind direction) and derived gal(e.g., wind intensity and turbulence).

2) Energy conversion parameterBarameters in this category are related to the
energy conversion process (e.g., power outputebpatth angle, generator torque, rotor
speed) and so on.

3) Vibration parametersVibration parameters indicate operational condgiof
the turbine systems. They usually involve measungsnef the drive train acceleration
and tower acceleration.

4) Temperature parameterghis category of parameters includes the tempegatur
measured at turbine components (e.g., bearing tatupe) and the air temperature

around turbine components and subsystems (e.gll@aterior temperature).

2 Status/Fault data

Status/fault data provides information on statused faults recorded by the
SCADA system. A fault, in this paragraph, refers a&ostatus that with a certain
probability results in a severe consequence towtmel turbine system. For example,
ignoring the status “Emergency stop nacelle/hub™mitch thyristor 1 fault” might
damage the wind turbine components. Other stathsegever, such as “No errors” and
“Remote start” may not lead to severe consequerieeamples of status codes are

illustrated in Table 6.1.

Each status code in Table 6.1 is associated wiipexific abnormality of a
turbine component or a subsystem. There are nda@lydifferent status codes in the data

considered in this research. The status text ineTalprovides a short description of the
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status, and the category denotes its severitygGatel” implies the most severe status,
and Category “4” corresponds to the least sevatast

The status/fault data has been collected by the (BCAystem. Nearly 7000
occurrences of status codes have been observeaclatterbine over the three-month

period, including the seven parameters illustrateébable 6.2.

Table 6.1 Sample status codes.

%tgéis Status Text Category
1 Program start PLC 2
2 No errors 4
3 Manual stop 4
4 Remote stop 4
5 Remote start 4
6 System OK 4
9 Under-voltage 4
21 Cable twisting left 4
o5 No speed reduction wit 1

primary braking
o8 No speed reduction wit 1
secondary brakir

Table 6.2 Parameters related to the fault inforomati

Parameter Name Definition Unit | Symbol
Fault time Date and time of the fault occurrence toun
Status code Status code assigned to the fault
Category Category of the status code (four categories Category

Generator speed Generator speed at the time the fault occurredm | cs(t,,)
Power output | Power production at the time the fault occurrekW | port,,,)
Wind speed Wind speed at the time the fault occurred| m/s | wst,,)
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3 Issues with status/fault data

Although the raw data contained over 7000 statuls/fastances for each of the
four wind turbines, some of the instances could Im®tconsidered for the following
reasons:

1) Presence of wind speed measurements with umralalgdarge values, as illustrated in

Table 6.3.

Table 6.3 lllustration of data instances with ofitange values of wind speed.

Date Time Status Code| Wind Speed| Power Output| Generator Torque
4/9/2009 | 4:24:10 AM 0 -42946720 -1 0
4/9/2009 | 4:34:10 AM 0 -42946720 -1 0
6/25/2009| 1:54:54 AM 183 32509316 -2 0
6/25/2009| 1:54:54 AM 183 27872676 -1 0

The wind speed measured by an anemometer shouldthe range [0, cut-out
speed], here [0 m/s, 21m/s].

In this case, the negative values of wind spee@ w&ssigned status code “0”, and
the positive out-of-range speed was assigned staiies “183” (see Table 3). However,
the status code “183” is not unique to the windesperror, as it is used to label other
anomalies when the wind speed is in the feasibigeaaA possible reason for the
multiple meaning of the same status code (here”jJ18&ht be due to multiple errors
occurring simultaneously. The status code “0” scdssed next.

2) Status code “0”

In Table 6.3 status code “0” was assigned to theobtange negative values of
the wind speed. The same status value is assigmetie four instances in Table 4.
Status code “0”, however, does not offer any usstaius or fault information. Based on

the data analysis, the meaningful status codesaapp®e in the range of [1, 350].
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Table 6.4 Fault information for status code “0”.

Date Time Status Code| Wind Speed| Power Output| Generator Torque
4/7/2009| 3:02:43 AM 0 17 -3 76
4/7/2009| 3:18:05 AM 0 16 -3 72
4/7/2009| 3:18:05 AM 0 15 -3 47
4/7/2009| 3:22:46 AM 0 14 0 77

3) Presence of duplicate data

Some of the data entries associated with the statles could be repeated a

number of times, as illustrated in Table 6.5 fa $itatus code “183”. The reason behind

the repeated values could be in the imperfectich@SCADA software.

Table 6.5 Duplicate fault information.

Date Time Status Code| Wind Speed| Power Output| Generator Torque
5/24/2009 | 7:20:34 PM 183 5 -2 998
5/24/2009 | 7:20:34 PM 183 5 -2 998
5/24/2009 | 7:20:34 PM 183 5 -2 998
5/24/2009 | 7:20:34 PM 183 5 -2 998

4 Pre-processing status/fault data

As incorrect data would negatively impact the mednililt, all status/fault data is

pre-processed for removal of the data in doubt. Aumaber of status/fault instances after

data pre-processing for each of the four turbiseshown in Table 6.6.
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Table 6.6 Reduced status/fault data set.

Turbine No. | Status/Fault Instances No of Status Codeg
1 2383 65
2 2619 59
3 817 49
4 1329 66

The data set in Table 6.6 has been significantlyeed. For example, the 7000
instances of the status/fault data initially pr@ddfor Turbine 4 have led to 1329
instances covering 66 different status codes. Tdia dollected at Turbine 4 has been

selected for further analysis.

6.2.2 The Power Curve

1. Power curve based on SCADA data

The shape of the power curve determines the healéthwind turbine. A model
power curve is portrayed as a sigmoid functionesenting the relationship between the
power produced for the wind speed in the range éatveut-in and cut-out speed.

A power curve built from the actual data deviatesrf an ideal power curve in
the following: (1) some power outputs are negat(® there are different values of
power output for identical wind speeds. The respiitanalysis of over 25000 instances of
5-min SCADA data collected for each of the fourbioes during a three-month period

are summarized in Table 6.7.
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Table 6.7 Summary of SCADA data for four turbines.

Number of Number of Number of Total
Turbine Positive Negative Erroneous Data Number of
Power Value | PowerValues Values Instance
1 24892 3415 1031 29338
2 21035 3844 1030 25909
3 3504 21309 1108 25921
4 8466 16359 1095 25920

The data in Table 6.7 has been organized accotdinige values of the power

output. Three categories of power output are censdlfor each wind turbine: positive

values, negative values, and values in error. tivespower implies generation of

electrical energy. Negative power implies that Wied turbine is consuming energy

likely due to the low wind speed. The erroneousadat due to various status/fault

situations. Figure 6.1 and Figure 6.2 illustréwe power curve for Turbine 4 for positive

and negative power values, respectively.
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Figure 6. 1 Turbine 4 curve for positive power \ealu
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The power curve in Figure 6.1 includes scattereithtpgoroviding a basis for
fitting into an ideal power curve. There are a nambf reasons for the variability
reflected in the power curve, including the erroasised by malfunctions of the turbine

systems and components.

'
a1
L

Power output [kW]

Wind speed [m/s]

Figure 6.2 Turbine 4 curve for negative power value

Most (97.48%) negative values of the power outpatia the range of [-10kW,
OkW], and the minimum negative power is -30kW. Ne&/3 of the power outputs
(63.11%) of Turbine 4 are negative during the pmkramalyzed. There are two main
reasons for negative power: the wind speed is Idamn the cut-in speed, and there are

maintenance issues with the turbine.
2. Power curve based on status/fault data

In addition to turbine operational data collectgtttie SCADA system, a turbine
status/fault data is generated for each turbine. Sthtus/fault data is time stamped, and
therefore it can be linked with the SCADA recortise solid line in Figure 6.3 illustrates

a model power curve obtained from the data usedap the power curve in Figure 6.1.
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The model power curve in Figure 6.3 was built fr8466 instances representing the

normal (fully functional) status of Turbine 4 bynstructing 30 neural networks.
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Figure 6.3 Power curve of Turbine 4 and scattemdtp included in the status/fault file.

The neural network with the smallest training emas selected to predict the
power curve (solid line) in Figure 6.3. A similgymoach to generate a power curve was
used in previous research [85]. The scattered goint Figure 6.3 represent the
status/faults instances collected as a separae A illustrated in Figure 6.3, some
status/fault data points present themselves nerdifitly than the points creating a typical
power curve. The data points representing zercegative power consumption also fall
in the status/fault category.

The wind speed and power output are used in thiegpaph as input variables to

identify faults of a wind turbine.

3. Status Codes in the Turbine Data

1) Frequency for statuses/faults
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The frequency of faults in the data set varies. &@ample, for Turbine 4, the
status codes “180” to “184” happen hundreds of simehile the status code “1” or “5”
occurs only a few times, or as rarely as once etrege months. Figure 6.4 illustrates the

frequency of statuses/faults for Turbine 4.

Status/Fault frequency

50

0 I|Il l|l I |I||I II I|-|I I|"I| I ||| ; |l ||l|l Lliy |II ITTTIN N N
1 6 31 63 102 124 141 148 157 181 189 276 296 344

Status/Fault code

Figure 6.4 Fault frequency of Turbine 4.

The most frequent status shown in Table 6.8 isrt&ial’, which occurs 220
times in the three-month period. The other thra&uses occur hundreds of times. These
statuses, however, do not seriously impact the viumbdine system. The low impact
status codes are of lesser interest to this reseRather, the focus is on the severer faults.

Table 6.8 provides detailed information on fivetis$acodes, 181 to status 185.
The most frequent status shown in Table 6.8 isrt$ga’, which occurs 220 times in the
three-month period. The other three statuses degndreds of times. These statuses,
however, do not seriously impact the wind turbigstesm. The low impact status codes

are of lesser interest to this research. Ratherfoitus is on the severer faults.
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Table 6.8 Detailed Information from status code 8185.

%{g(tjl:s Status Text Category| Frequency
181 Idling position 4 214
182 Start-up 4 220
183 Load operation 4 102
184 Shut down 4 130
185 Manual operation of pitch 4 37

2) Fault versus status

Neither the data available in this research norctimeent literature discusses the
relationship between “statuses” and “faults” in &vitirbines. This paragraph presents a
useful approach for making such a distinction.

Each status/fault code of a wind turbine is asslgnee of four categories
according to its severity of impact on the windbine system. It is observed from the
data provided that categories 1, 2 and 3 might eélyeimpact the wind turbine system
and its components. But the status codes in Catefare not likely to seriously hinder
the operations of a wind turbine. Statuses in caiteg 1, 2 and 3 are regarded as faults,
and statuses in Category 4 are considered as edatlise distribution of faults for all
four turbines in each category is shown in Tab®e 6.

As illustrated in Table 6.9, Category 4 statusezipmost frequently (87.33% on
average for the four turbines). The most severésfgCategory 1) happen on average
1.50% of the time. The faults of Categories 2 arat@ir more frequently than those of

Category 1. The fault distribution of Turbine 4ligstrated in Figure 6.5.
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Turbine Category 1 Category 2 Category 3 Category 4 Overall
Number| Percentage Number| Percentage Number| Percentage Number| Percentage
1 40 1.68% 417 17.50% 44 1.85% 1882 78.98% | 2383
2 14 0.53% 42 1.60% 36 1.37% 2527 96.49% | 2619
3 11 1.35% 40 4.90% 29 3.55% 737 90.21% 817
4 42 3.16% 131 9.86% 60 4.51% 1096 82.47% 1329
Sum, 0, 0, 0, 0,
Average 107 1.50% 630 8.81% 169 2.36% 6242 87.33% | 7148
1000
3 800
S
3 600
o
% 400
200
0_

Category

B Fault category B Fault

Figure 6.5 Fault distribution for Turbine 4.

There are 35 specific faults (11 in Category lir2Gategory 2, 4 in Category 3),

and 31 different status occurrences. In total 223+ 131 + 60) faults and 1096 statuses

are captured during the three-month period.

3) Most frequent faults

The faults that occur relatively frequently (Fafdéquency > 10) and their

categories are listed in Table 6.10.
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Table 6.10 Most frequent faults of Turbine 4.

No Status Code Status Text Category = r;;lfét nc
1 31 Timeout of yaw counter 2 12
2 45 Hydraulic pump time too high 2 20
3 52 Gearbox oil pressure too low 2 15
4 63 Safety chain 1 14
5 141 Rotor CCU collective faults 2 18
6 142 Line CCU collective faults 2 18
7 296 Malfunction of diverter 3 55

As illustrated in Table 6.10, only seven faults e more than 10 times during the
time period reflected in the data, including oneltfdrom Category 1, five faults from
Category 2, and one fault from Category 3. As trafunction of the diverter (status

code “296”) occurs most frequently, it is seledtdfurther analysis.

6.3 Methodology for Fault Diagnosis of Wind Turksne

6.3.1 Three-level fault prediction

The proposed methodology for fault prediction ohaviturbine systems involves

three levels (see Figure 6.6).

Level 1: ]i)erzzliczt: Level 3:
Predict Predict

category of

tatus/fault
statusrfau status/fault

specific fault

Figure 6.6 Levels for fault prediction.

Level 1: Predict status/fault
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The goal of this level is to distinguish the st#mdt data from the labeled
SCADA data (to be discussed in Section 6.4). Nfedghtiation is made between a status
and a fault.

Level 2: Predict category of status/fault

It is not enough to recognize whether a statug/fzag occurred at a certain time.
At this level, the category of a status or a fatletected.

Level 3: Predict specific fault

There are nearly 350 different status codes ocwymith different frequencies
for wind turbines. It is easier to detect statubes are more frequent. At this level, fault
“Malfunction of diverter” is predicted up to 60 mites before it occurs.

For each level of fault prediction, the generalgess is divided into four steps:
labeling SCADA data, data sampling, model extragtiand computational results
analysis. The process of fault prediction is oetlinn Figure 6.7 and discussed in the

next sections.

Step 4:
Analysis of
computational
results

Step 1:
Labeling
SCADA data

Step 3:
Model
extraction

Step 2:

Data sampling

Figure 6.7 Process of fault prediction.

6.3.2 Labeling SCADA data with status/fault codd an
category
The data of Table 6.2 is generated whenever as#fablt occurs. The SCADA
and the status/fault data is integrated by assigstatus/fault codes and their categories

to SCADA data according to (6.1)
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If TSCADA(t - n) < Tfault (tfault) < TSCADA(t -n +1) Then
Status_Codle(nh - ) = Status_QCnge

Categoty(n ) = Categdgy( ) (6.1)

where Status_Code and Category are as shown ire Babjn is the number of time
stamps in advance of the status/fault. An attempitbe made to detect a status/fault
n x 5 minutesin advance. In this paragraph,is assumed as 12; i.e., up to 60 minutes
ahead of reporting the status/fault.

In the process of matching the status/fault data {&ble 6.2) with the SCADA
data (unlabeled data), some status/fault datalitsetiately ignored. The reason is that the
status/fault data is recorded whenever the stattiseofault happened, while the turbine
operational data is reported at 5-min intervalstimuthe 5-min interval, the status code

with the most severe category is considered. Talilé shows a typical status code file.

Table 6.11 Ignored status code data while matahwgh the SCADA data.

Wi
Date | Time Sc.:tgéis Status Text Coartyeg Snge (I;ﬁgirt G.?g%rféor
ec
M3z | 1123271 g5 PC restart 4 |6 | 7 22
M3z | 1123271 456 Repair 4 |6 | 7 22
40/8/g2 11:P2|3|:27 292 Malfun(;;[iao;eorf cabine 3 6 7 29
R ET] g0 Mo | 5 6| o |
4£éz 11:P2|3I:27 296 Malfunction of diverter | 3 6 -7 22
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As illustrated in Table 6.11, a number of statudesoare reported at the same
time, i.e., 11:23:27 PM. Of those, only the mostese category status code, e.g., status
code “292” “Malfunction of cabinet heaters” is medgwith the SCADA data. This way
the 5-min record of the SCADA file correspondingthe time stamp 11:23:27 PM is
assigned the Category 3 label.

After the turbine operations data have been labslddthe status/fault according
to (6.1), 637 status/fault instances remain fordlelvand Level 2 predictions. In other
words, almost 50% of the status/fault infor

mation is lost. The fault “malfunction of divertewith the status code 296 is used
in this experiment. Of 55 status occurrences, 8@sifault instances were used, and 5

instances were lost.

6.3.3 Data Sampling

An ideal training data set should be balanced wsitéitus/fault and normal
operations data. The selection of the status/i@ath was discussed in Section 5.2. To
construct a training data set reflecting normabitue operations, direct use of the labeled
SCADA data is not acceptable, as the number ofrdsc(8466) would vastly exceed the
number of instances of the status/fault data ams #tause a prediction bias. Data
sampling is an effective technique to deal witls iksue.

A data sample is randomly selected from the nonmstiances of the labeled
SCADA data of Turbine 4. To create a balanced datathe size of the data sample
depends on the size of the fault data at a paatidalzel. Thus, for Level 1 and Level 2,
650 normal instances are selected, and for LevEl8 instances. At each level, the fault
and normal instances are combined into one file dédmbined data set for Level 1 and
Level 2 predictions contains 650 normal instanaesd 837 fault instances. For Level 3

predictions, the combined data set contains 118alnstances and 50 fault instances
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6.3.4 Test strategy

At each level of fault prediction, a training da&t is created by randomly
selecting 2/3 of the instances of the combined sletdor each time stamp franto t-12.
Specifically, 13 training data sets are providedpiediction from current time to the
proceeding 60 minutes, i.e~12.

Two types of test data sets are provided. The fast data set uses 1/3 of the
instances of the combined data for each time st&fopnal instances and fault instances
are sampled separately to avoid unbalanced faatiitalition in the training and test data
sets. For example, 16 faults of Category 1 areigeavin the combined data sets; 10 are
used for training and the other 6 are used fomgsihe second test data set is created
by randomly selecting 10% of the data from the ledbeSCADA data. In the first test
data set, the percentage of faults versus normstdnoes is much higher than that in the
labeled SCADA data set. The second test data remeshe distribution of the labeled
SCADA data. The number of instances sampled foh eata set (at each of the three

levels) is illustrated in Table 6.12.

Table 6.12 Training and test data sets.

Level Training Data St Test Data Set Test Data Set
Level | Norma Status/Fau Norma Status/Fau Norma Status/Fau
1 43¢ 42F 217 21z 2007 61
Level | Norma | C1 | C2 | C3| C4 |[Norma |C1|C2|C3| C4 |Norma |C1|C2|C3| C4
2 43¢ 1C | 22 | 16 | 375 | 217 4 | 12| 9 | 187 | 2007 12| 2|56
No No No
Level | Fault Fault 296 Fault Fault 296 Fault Fault 296
3 296 296 296
80 35 38 15
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As illustrated in Table 6.12, the number of fanktances in the second test data
set is limited. There are 61 status/fault instarfoe Level 1 predictions. Only 5 faults (1
for Category 1, 2 for Category 2, and 2 for Catgd@®rare provided among the sampled
data for Level 2 predictions. For Level 3 predioipthe randomly sampled test data has

a very low probability of including the fault “Malfction of diverter”.

6.4 Industrial Case Study

6.4.1 Model Extraction

The model’s extraction process is illustrated ig. [6.8.

Level 1: Status/fault (tfault)
.

Level 2: Fault category (tfault)
IRE——————

Wind speed (7-n)
—>
Model extraction

Power output (z-n)

) Level 3: Fault “ 296” (tfault)

\. J ’

Figure 6.8 The model extraction process.

As illustrated in Fig. 6.8, input variables are dispeed (-n) and power output
(t-n). The target outputs are (1) fault-no faultgt; (2) category of the fault at,,, ;
and (3) fault “296” at,,,. To compare the prediction results, three metulefned in

(6.2) - (6.4) are used.
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Number of correctly predicted fault instances + Hanof correctly predicted normal instancxeisoo%

Accuarcy=
¥= Number of fault instances + Number of normal insts
(6.2)
Sensitivity= Number of correctly pred!cted fault mStaanefOO%
Number of fault instances
(6.3)
Specification= Number of correctly predlctgd normal mstancxelsOO%
Number of normal instances
(6.4)

Accuracy provides the percentage of correctly madedictions. Sensitivity
expresses the percentage of correctly predictetisfaand specificity expresses the

percentage of correctly predicted normal instances.

1. Model extraction at Level 1

Four data-mining algorithms have been applied toaekthe models, the Neural
Network (NN), the Neural Network Ensemble (NN Enbéay the Boosting Tree
Algorithm (BTA), and the Support Vector Machine (8Y The prediction results for the

test data set 1 at current timare shown in Table 6.13.

Table 6.13 Performance of four algorithms predgstatus/fault at time t.

Algorithm Acg(;)r)acy Serz(?/(i)t)ivity Sp(?(();(i)f)icity
NN 74.71 81.00 68.67
NN Ensemble 74.56 83.67 65.81
BTA 71.27 84.66 59.50
SVM 69.64 59.97 78.92
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As illustrated in Table 6.13, the NN-ensemble makesbest quality predictions,

and therefore it is recommended for building Le¥eimodels. To construct the NN-

ensemble, 30 NNs are built and the best five dectssl.

2. Model extraction at Level 2

Several data-mining algorithms have been appliegktact the models, including

the Neural Network (NN), the Standard Classificatemd Regression Tree (CART), the

Boosting Tree Algorithm (BTA), and the Support \@ctMachine (SVM). The

prediction accuracy (%) results for test data sat durrent time are compared in Table

6.14.
Table 6.14 Performance of four algorithms for fanaltegory predictions.
Prediction Prediction Prediction Prediction Prediction

Algorithm Accuracy Accuracy for Accuracy for Accuracy for | Accuracy for

for Normal Category 1 Category 2 Category 3 Category 4
NN 76.66 0.00 0.00 12.00 74.91
BTA 41.00 22.22 83.33 0.00 72.15
CART 96.08 62.50 52.94 56.00 95.20
SVM 80.88 0.00 0.00 0.00 69.28

for further predictions of fault categories.

As illustrated in Table 6.14, CART exhibits theosigest potential and is selected

3. Model extraction at Level 3

Several algorithms have been applied to extractitii@-mining models, including

the Neural Network (NN), Neural Network EnsembleN(fEnsemble), Boosting Tree
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Algorithm (BTA), and Support Vector Machine (SVM)he prediction results for test

data set 1 at current time t are compared in Talilg.

Table 6.15 Performance of four algorithms in predicof a specific fault.

Algorithm | Accuracy (%) | Sensitivity (%) | Specification (%)
BTA 69.81 86.67 63.16
NN 72.00 66.67 70.45
NN
Ensembl 68.00 82.88 66.67
SVM 70.59 47.06 82.35

As illustrated in Table 6.15, the BTA algorithm Hasen selected for prediction

of the fault “Malfunction of diverter”. The learmgrrate used by this algorithm was 0.1.

6.4.2 Computational Results Analysis

1 Computational results for Level 1
1) Performance of test data set 1

In this section, the models extracted in Sectidnlthave been applied to test data
1 (as illustrated in Table 6.12) for Level 1 preéaios. The models are extracted from
current timet to time stamp - 12 (13 prediction models). The prediction restoissix
models (one per time stamp) are illustrated in @#&bl16.

As illustrated in Table 6.16, the prediction accyr#s in the interval of [63%,
77%]. The sensitivity is relatively high, implyirtgat most faults and statuses have been
correctly identified. The accuracy and sensitidtythe time stamp- 12 are lower than

at other periods.
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Table 6.16 Test 1 results for status/fault at ispetstamps.

Time Stamp | Accuracy (%) | Sensitivity (%) | Specification (%)
t 74.56 83.67 65.81
t-1 74.42 75.98 72.93
t-3 75.19 85.87 65.02
t-6 75.10 86.34 64.43
t-9 76.03 88.38 64.40
t-12 63.77 51.18 75.63

2) Performance of test data set 2

In this section, the models extracted in Sectidnh@ve been applied to test data

set 2 (as illustrated in Table 6.12) for Level &giction. The prediction results obtained

at time stamps are illustrated in Table 6.17.

Table 6.17 Test 2 results for status/fault predict six time stamps.

Time Stamp | Accuracy (%) | Sensitivity (%) | Specification (%)
t 68.63 78.69 63.88
t-1 66.17 93.18 65.58
t-3 65.88 83.61 65.37
t-6 66.70 65.57 66.77
t-9 65.39 73.77 65.37
t-12 77.42 39.34 78.57

The results in Table 6.17 show that prediction eacy at the time stampsto

t-12is in the range of [65%, 78%)]. Most statuses/fablise been correctly predicted.

The percentage of correctly predicted statusesgfaiin the interval of [39%, 94%], and

correctly predicted normal instances are in thgeaof [63%, 79%)].
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2. Computational results for Level 2 prediction
1. Performance of test data set 1

In this section, the models extracted in Secti@h@ve been applied to test data 1
(as illustrated in Table 6.12) for Level 2 predics. The models are extracted from the
current timet to time stamp - 12 (13 prediction models). The prediction accurgd)

results produced at six time stamps are illustratéichble 6.18.

Table 6.18 Test 1 results for prediction of stdéust category at six time stamps.

Time | Accuracy inNsc;;TiS Category 1| Category 2| Category 3| Category 4
t 93.39 96.08 62.50 52.94 56.00 95.20
t-1 93.39 95.79 68.75 47.06 52.00 95.91
t-3 94.31 92.27 50.00 70.59 56.00 94.31
t-6 92.21 94.79 56.25 67.65 68.00 92.70
t-9 91.86 94.83 68.75 52.94 48.00 93.24
t-12 90.72 94.24 56.25 38.24 40.00 92.88

As illustrated in Table 6.18, the prediction accyrdor normal and status
instances is high. However, the percentage of ctiyrpredicted fault instances is in the

range of [40%, 71%].

2. Performance of test data set 2

In this section, the models extracted in Secti@h@ve been applied to test data 2

at Level 2. The accuracy results (%) for six tirteargps are illustrated in Table 6.19.
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Table 6.19 Test 2 results for prediction of stdéust category at six time stamps.

Time | Accuracy Normal Category| Category| Category| Category
Instances 1 2 3 4

t 99.27 99.75 100.00 | 100.00 | 100.00 82.14
t-1 99.17 98.00 100.00 50.00 100.00 84.62
t-3 99.13 99.36 50.00 50.00 77.78
t- 6 99.08 99.90 100.00 50.00 50.00 73.21
t-9 98.87 99.75 50 100 75.93
t-12 98.77 99.51 100 100 50 76.79

Despite the fact that the number of status/faulegaries is small, the results

presented in Table 6.19 are quite impressive. Hnalbility in accuracy seen there is due

to the small number of status/fault categories.&@mple, if one of the two status/fault

categories is predicted in error, then the accudmyeases from 100% to 50%. The

prediction accuracy for normal instances is stijhh However, the accuracy for

status/fault category prediction is lower comparetest data set 1.

3 Computational results for Level 3 predictions

In this section, the models extracted in Secti@hh&ave been applied to test data

set 1 (as illustrated in Table 6.12) for Level 8gictions. The models are extracted from

current timet to time stamp - 12 (13 prediction models). The prediction resddir six

time stamps are shown in Table 6.20.
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Table 6.20 Test 1 results for prediction of a sipe&ult at six time stamps.

Time Stamp| Accuracy (%) | Sensitivity (%) | Specification (%)
t 69.81 86.67 63.16
t-1 64.15 66.67 63.16
t-3 67.92 73.33 65.79
t- 6 67.92 73.33 65.79
t-9 66.04 33.33 78.95
t-12 49.06 24.53 34.21

As illustrated in Table 6.20, the prediction accyraf the fault “Malfunction of

diverter” is in the interval of [49%, 70%]. The pentage of correctly predicted faults is

in the interval of [24%, 87%], and the correctlyegicted instances without the fault

“Malfunction of diverter” is in the interval of [34, 79%.

6.5 Summary

A methodology to predict turbine faults using imf@tion provided by SCADA

systems and fault files was presented. The metbggainvolves three steps: (1) the

existence of a status/fault was identified; (2) tategory (severity) of the fault was

predicted; and (3) a specific fault was predictidte computational results reported in the

paragraph demonstrated that, in most cases, feaftsbe predicted with a reasonable

accuracy 60 minutes before they occur. The prexficiccuracy of the fault category is

somewhat lower yet acceptable. Due to the datddiions, identifying a specific fault,

though valuable, decreases accuracy.

The research reported in this paragraph was peefbrmith industrial data

collected at operating wind turbines. The majoficlifty was in the low frequency of the

data. The description of faults was not clear, ta@dnumber of fault occurrences was far
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from sufficient. A better prediction performance ik have been achieved with higher
quality data.

The limitations surrounding this research are de\is:

1) The volume of fault data was limited, and therefmany faults did not appear
in the data or occurred only sporadically. Sucle faults are difficult to detect by any
modeling approach.

2) The 5-min interval for collecting the vast méyof data was too long. Such a
long interval led to a significant loss of the bistof the fault emergence.

3) In this paragraph, every status code was comsidendependently. The

relationship between faults has not been considargdly due to the low frequency data
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CHAPTER 7.
CONCLUSION
This thesis proposes a framework of predictive n®dender data mining
technique. Chapter 1 provided a review of predéctimodels in wind energy with
emphasis on short-term wind speed forecasting, wawder generation, optimization and
condition monitoring and diagnosis. Chapter 2 idtrced a methodology for short-term
wind speed prediction based on wind farm layoubnmiation. Wind speeds collected
from neighborhood wind turbines were used as predic Chapter 3 presented models
for short-term prediction of wind turbine paramstencluding wind power and rotor
speed. A clustering-based method for power gemeratias proposed in Chapter 4.
Chapter 5 introduced an intelligent wind turbinstsyn and dynamic control strategies
for optimization of power generation and rotor rarates. Fault diagnosis and prediction
using SCADA data was explored in Chapter 6.
There are still other interesting research questtbat should be answered in the
future. Future research can be focused on spdaifit detection, condition monitoring

and adjustable dynamic control of the wind turtbiased on SCADA data.

www.manaraa.com



141

REFERENCES
[1] M. Monfared, H. Rastegar and H.M. Kojabdd,new strategy for wind speed

forecasting using artificial intelligent methodRé&newable Energy/ol. 34,
No.7, pp. 845-848, 2009.

[2] M.C. Mabel and E. Fernandez, "Analysis of wpalver generation and
prediction using ANN: A case studyRenewable Energy/ol. 33, No. 5, pp.
986-992, 2008.

[3] http://www.awea.orgAccessed ¥ February, 2009.

[4] C.A. Walford, Wind turbine reliability: Unastanding and minimizing wind
turbine operation and maintenance costs. Sandiaridt_aboratoires,
Albuquerque, N.M., 2006, Available: www.prod.sandav/cgi-
bin/techlib/access-control.pl/2006/061100.pdf.

[5] R. Wiser and M. Bolinger, Annual Report on UVBind Power Installation, Cost,
and Performance Trends: 2006. NREL, US Departmieahergy, Golden, CO,
2007. Available: http://www.nrel.gov/wind/pdfs/41=L8df .

[6] F. Bianchi, H. Battista, and R. Mant¥yihd Turbine Control System: Principles,
Modeling and Gain Scheduling Desigr8pringet 2006, pp.8-28

[7] N. Nanayakkara, M. Nakamura and H. Hatgz&redictive control of wind
turbines in small power systems at high turbulendvepeeds,Control
Engineering Practiceyol. 5, No. 8, pp. 1063-1069, 1997.

[8] M.Monfared, S. Rehman and T. Halawahi neural networks approach for wind
speed predictionRenewable Energyol. 13, No. 3, pp. 345-354, 1998.

[9] G. Riahy and M. Abedi, "Short term winge®d forecasting for wind turbine
applications using linear prediction methodgnewable Energyol. 33, No. 1,
pp. 35-41, 2008.

[10] E. Bossanyi, “Short-term wind predictioging Kalman filters, Wind
Engineering Vol. 9, No. 1 pp. 1-8, 1985.

[11] T. Barbounis, and J. Theocharis, “Locaéigurrent neural networks for long-
term wind speed and power predictioNgurocomputingyol. 69, No. 4-6, pp.
466-496, 2006

[12] S. Watson, L. Landberg and J. Hallid&ypplication of wind speed forecasting
to the integration of wind energy into a large sqadwer systemJEE
Proceedings: Generation, Transmission and DistidntVol. 141, No. 4, pp.
357-362, 1994.

[13] A. Kusiak, H. Zheng and Z. Song, “Shatr prediction of wind farm power: A
data-mining approachEEE Transactions on Energy Conversidfol. 24, No. 1,
pp. 125-136, 2009.

[14] 1. Damousis and P. Dokopoulos, "A fuzzypert system for the forecasting of
wind speed and power generation in wind farris,22nd IEEE Power

www.manaraa.com



142

Engineering Society International Conference on @olwdustry Computer
Applicationspp. 63-69, May 20-24, 2001.

[15] I. Damousis, M. Alexiadis, J. Theochairsd P. Dokopoulos, "A fuzzy model for
wind speed prediction and power generation in vparks using spatial
correlation,"IEEE Transactions on Energy Conversidiol. 19, No. 2, pp. 353-
361, 2004.

[16] S. Sancho, P. Angel M., O. Emilio G. Axtonio, P. Luis and C. Francisco,
"Accurate short-term wind speed prediction by eijplg diversity in input data
using banks of artificial neural network&eéurocomputingyol. 72, No. 4-6, pp.
1336-1341, 2009.

[17] P.Flores, A. Tapia and G. Tapia, "Apgtion of a control algorithm for wind
speed prediction and active power generatiBefiewable Energyjol. 30, No.
4, pp. 523-536, 2005.

[18] B. Mehmet, S. Besir and Y. Abdukadri, '[figcation of artificial neural networks
for the wind speed prediction of target statiomgsieference stations data,"
Renewable Energyol. 32, No. 14, pp. 2350-2360, 2007.

[19] M. Mohandes, T. Halawani, S. Rehman, A. Huss&upport vector machines
for wind speed predictionRenewable Energy,ol. 29, No. 6, pp. 939-947,
2004.

[20] A. Ahmed and D. Lee, "SVR-based wind gpestimation for power control of
wind energy generation systerr8urth Power Conversion Conference-
NAGOYA, PCC-NAGOYA 2007 - Conference Proceedipys,431-1436, 2007.

[21] H. Tarek, F. Ehab and M. Magdy, "One dagad prediction of wind speed and
direction,"IEEE Transactions on Energy Conversidol. 23, No. 1, pp. 191-
201, 2008.

[22] G.V. Kuik, B. Ummels and R. Hendriks, “Sustable Energy Technologies,”
Springer Amsterdam, The Netherlands, 2007.

[23] A. Kusiak, H. Zheng and Z. Song, “Wind Fariomier Prediction: A Data-Mining
Approach”,Wind EnergyVol. 12, No. 3, pp. 275-293, 2009.

[24] L. Ma, S.Luan, C.Liang, H.Liu and Y. Zhand\ feview on the forecasting of
wind speed and generated powé&&newable and Sustainable Energy Reviews
Vol. 13, No. 4, pp. 915-920, 2009.

[25] G. Kariniotakis, P.Pinson, N.Siebert, @6l and R.Barthelmie “The State of
the art in short-term prediction of wind power-fr@am offshore perspective”,
Anemos Project Report D1.1 (Available online: Htgmemos.cma.fr), 2003.

[26] C. Alexandre, C. Antonio, N. Jorge, L. GN. Henrik and F. Everaldo, “A
review on the young history of the wind power skertn prediction,”
Renewable and Sustainable Energy Reviews, VoN@26, pp. 1725-1744,
2008.

www.manaraa.com



[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

143

L. Landberg, “Short-term prediction oktpower production from wind farms,”
Journal of Wind Engineering and Industrial Aerodyies, Vol. 80, No.1-2, pp.
207-220, 1999.

M. Alexiadis, P. Dokopoulos, H. Sahsamanaghod |. Manousaridis, “Short-
term forecasting of wind speed and related eledtgower,” Solar Energy, Vol.
63, No. 1, pp. 61-68, 1998.

M. Negnevitsky and C.W. Potter, “Innovatisieort-term wind generation
prediction techniques”, Proceedings of the Powete3ys Conference, pp. 60-65,
2006.

U. Focken, M. Lange, K. Monnich, H.P. \WalH.G. Beyer and A. Luig, “Short-
term prediction of the aggregated power outputiothifarms—a statistical
analysis of the reduction of the prediction ermpispatial smoothing effects, ”
Journal of Wind Engineering and Industrial Aerodyies, Vol. 90, No. 3, pp.
231-246, 2002.

S. Haykin,” Neural Networks: A Comprehenskeundation”. Macmillan
Publishing: New York, 1994.

S. Kelouwani and K. Agbossou, "Nonlinear miadentification of wind turbine
with a neural network," IEEE Transactions on Endggyiversion, Vol. 19, No. 3,
pp. 607-612, 2004.

Y. Xiao, W. Wang and X. Huo. “Study on theng-series wind speed forecasting
of the wind farm based on neural networks”, Eneegyservation Technology,
Vol.25, No. 2, 2007, pp.106-109.

S. Li. “Wind power prediction using recurrantltilayer perceptron neural
networks”, Power Engineering Society General Megtifol. 4, 2003. pp. 2325—
2330.

S. Lou, Z. Liand Y. Wu, “Clustering analysithe wind power output based on
similarity theory,” 3rd International Conference Daregulation and
Restructuring and Power Technologies, DRPT 200828p5-2819, 2008

U. Taner and A. Ahmet, “Wind turbine powemrea estimation based on cluster
center fuzzy logic modeling”, Journal of Wind Enggming and Industrial
Aerodynamics, Vol. 96, No. 5 pp. 611-620, 2008.

B. Boukhezzar, H. Siguerdidjane and M.uvgen Hand, "Nonlinear control of
variable-speed wind turbines for generator torguéihg and power
optimization,"ASME Transactions: Journal of Solar Energy EngimegiVol.
128, No. 4, pp. 516-530, 2006.

R. Datta and V. T. Ranganathan, "A metbbttacking the peak power points for
a variable speed wind energy conversion systdakE Transactions on Energy
Conversionyol. 1, No.1, pp. 163-168, 2003.

S. Morimoto, H. Nakayama, M. Sanada and akeda, "Sensorless output

maximization control for variable-speed wind getierasystem using IPMSG,"
IEEE Transactions on Industry Application®l. 41, No.1, pp. 60-67, 2005.

www.manaraa.com



[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

144

E. Muljadi and C. P. Butterfield, "Pitdontrolled variable-speed wind turbine
generation,'lEEE Transactions on Industry Application&l. 37, No.1, pp. 240-
246, 2001.

[. Munteanu, N. A. Cutululis, A. I. Bratand E. Ceanga, "Optimization of
variable speed wind power systems based on a L@®agh,"Control
Engineering Practiceyol. 13, pp. 903-912, 2005.

K.E. Johnson, L.Y. Pao, M.J. Balas, andl Eingersh, "Control of variable-speed
wind turbines: standard and adaptive techniqguesneximizing energy capture,”
IEEE Control Systems Magazjréol. 26, No. 3, pp. 70-81, 2006.

L. C. Henriksen, "Model predictive coritad a wind turbine,” 2007.

E. B. Muhando, T. Senjyu, N. Urasaki,Yana and T. Funabashi, "Robust
predictive control of variable-speed wind turbirengrator by self-tuning
regulator,” in IEEE Power Engineering Society General Meet2@)7, pp. 1-8.

E. F. Camacho and C. Bordoktdel Predictive ControlLondon, UK:
Springer, 1999.

J. A. RossiteiViodel-Based Predictive Control: A Practical Apprbablew
York: CRC Press, 2003.

R. Hyers, J. McGowan, K. Sullivan, J. Manwaelhd B. Syrett, “Condition
monitoring and prognosis of utility scale wind turds,” Energy MaterialsVol.
1, No. 3, 2006, pp. 187-203.

Z. Hameed, Y. Hong, Y. Cho, S. Ahn, and CS¢ng, “Condition monitoring
and fault detection of wind turbines and relategbathms: a review,Renewable
and Sustainable Energy Reviewsl. 13, No. 1, 2009, pp. 1-39.

Y. Amirat, M. Benbouzid, B. Bensaker, andWamkeue, “Condition monitoring
and fault diagnosis in wind energy conversion systea review”jn Proc. 2007
IEEE International Electric Machines and Drives Garence Vol. 2, May 2007,
pp. 1434-1439.

P. Tavner, G. W. Bussel, and F. Spinato, “Mae and converter reliabilities in
wind turbines,”in Proc. 3rd IET International Conference on Povieectronics,
Machines and Drive2006, pp. 127-130.

M. Wilkinson, F. Spinato, and P. Tavner, “@dion monitoring of generators
and other subassemblies in wind turbine drive $fain Proc. 2007 IEEE
International Symposium on Diagnostics for ElecMachines, Power
Electronics and DrivesSep. 2007, pp. 388-392.

Y. Amirat, M. Benbouzid, E. Al-Ahmar, B. Bealser and S. Turri, “A brief status
on condition monitoring and fault diagnosis in wigrdergy conversation
systems”,Renewable and Sustainable Energy Revi&wek 13, No. 9, 2009, pp.
2629-2636.

B. Lu, Y. Li, X. Wu and Z. Yang, “A review atcent advances in wind turbine

condition monitoring and fault diagnosjsih Proc. IEEE Conferencen Power
Electronics and Machines in Wind Applicatio809, pp. 1-7.

www.manaraa.com



145

[54] E. Becker and P. Posta, “Keeping the bladesrg: condition monitoring of
wind turbine gearsRefocusVol. 7, No. 2, 2006, pp. 26-32.

[55] Editorial, “Managing the wind: reducing kil@att-hour costs with condition
monitoring”, RefocusVol. 6, No.3, 2005, pp. 48-51.

[56] P. Caselitz and J. Giebhardt, "Rotor conditmonitoring for improved
operational safety of offshore wind energy convstterans. ASME, J. Sol.
Energy Eng.Vol. 127, No. 2, 2005, pp. 253-261.

[57] V. Leany, D. Sharpe and D. Infield, “Conditicnonitoring techniques for
optimization of wind farm performancdht. . COMADEMVol. 2, No. 1, 1992,
pp. 5-13.

[58] M. Sanz-Bobi, M. Garcia, P. Del, “SIMAP: itiigent system for predictive
maintenance application to the health conditioniteong of a wind turbine
gearbox”,Comput. Ind.Vol. 57, No. 6, 2006, pp. 552-568.

[59] L. Rodriguez, E. Garcia, F. Morant, A. Coiltec and E. Quiles, “Application of
latent nestling method using colored Petri netgHerfault diagnosis in the wind
turbine subsetsin Proc. 2008 IEEE Int. Conf. Emerging Techndkgjand
Factory Automationpp. 767-773.

[60] E. Echavarria, T. Tomiyama, and G. van Bus$&lult diagnosis approach based
on a model-based reasoner and a functional dedignarwind turbine: an
approach towards self-maintenancitrnal of Physics Conference Seyiesl.

75, 2007, 012078.

[61] E. Echavarria, T. Tomiyama, H. Huberts ands& Bussel, “Fault diagnosis
system for an offshore wind turbine using quaNafphysics,'in Proc. EWEC
2008 Brussels, Belgium, 2008.

[62] A. Zaher and S. McArthur, “A multi-agent fadetection system for wind turbine
defect recognition and diagnosigy’Proc.2007 IEEE Lausanne POWERTECH
pp. 22-27.

[63] M. Whelan, K. Janoyan and Q. Tong, “Integdateonitoring of wind plant
systems,’Proc. SPIE Smart Sensor Phenomena, TechnologyoNet, and
Systemsyol. 6933, 2008, pp. 69330F.

[64] P. Ahlgren, B. Jarneving and R. Rouss&Ragquirements for a cocitation
similarity measure, with special reference to Raasscorrelation coefficient”,
Journal of the American Society for Informationedcie and Technologyol.
54, No. 6, , pp. 550-560, 2003.

[65] T. Ustuntas and A.D. Sahin, "Wind turbjm@wver curve estimation based on
cluster center fuzzy logic modelingldurnal of Wind Engineering and Industrial
Aerodynamicsyol. 96, No. 5 pp. 611-621, 2008.

[66] J.H. Friedman, "Stochastic gradient bimgs* Computational Statistics & Data
Analysis Vol. 38, No. 4, pp. 367-378, 2002.

[67] J.H. Friedman, "Greedy function approation: A gradient boosting machine,"
Annals of Statistics/ol. 29, No. 5, pp. 1189-1232, 2001.

www.manaraa.com



146

[68] M.L.Hambaba, "Intelligent hybrid systenr fdata mining,"Proceedings of the
IEEE/IAFE 1996 Conference on Computational Inteltige for Financial
Engineeringpp. 111, March 1996.

[69] S. Piramuthu, "Evaluating feature selmttinethods for learning in data mining
applications,'Proceedings of the Thirty-First Hawali Internatidr@onference
on System Sciendéohala Coast, Hl, Vol. 5, pp. 294-302, 1998.

[70] P.N. Tan, M. Steinbach, V. Kumar, “Intraddion to Data Mining,’/Addison
Wesley, 2006.

[71] J. Hua, W.D. Tembe, and E. R. Doughé®grformance of feature-selection
methods in the classification of high-dimensiored&attern Recognitionvol.
42, No. 3, pp. 409-424, 2009.

[72] C.Tsai, “Feature selection in bankruppegdiction,”Knowledge-Based Systems,
In Press Available online August 14, 2008.

[73] C. BishopNeural Networks for Pattern Recognitigdxford: University Press,
1995.

[74] A. E. Eiben and J. E. Smithfroduction to Evolutionary ComputatioNew
York: Springer, 2003.

[75] B. Ernst, B. Oakleaf, M. L. Ahlstrom, Mange, C. Moehrlen, B. Lange, U.
Focken and K. Rohrig, "Predicting the wintEEE Power & Energy Magazine,
Vol. 5, pp. 78-89, 2007.

[76] J. Espinosa, J. Vandewalle and V. Wdttzzzy Logic, Identification and
Predictive ControlLondon, UK: Springer, 2005.

[77] J.F.Manwell, J. G. McGowan and A. L.dees,Wind Energy Explained:
Theory, Design and Applicatiof' Ed., London, UK: John Wiley, 2002.

[78] Y.D. Song, B. Dhinakaran and X. Y. Bao, f\&ble speed control of wind
turbines using nonlinear and adaptive algorithrdsyrnal of Wind Engineering
and Industrial Aerodynamic¥ol. 85, No.3, pp. 293-308, 2000.

[79] I. H. Witten and E. Franiata Mining: Practical Machine Learning Tools and
Techniques2nd Ed. San Francisco: Morgan Kaufmann, 2005.

[80] Y. C. ZhuMultivariable System Identification for Process @oh New York:
Pergamon Press, 2001.

[81] R. Kohavi and G.H. John, "Wrapper for featwsebset selection,Artificial
Intelligence Vol. 97, Nos 1-2, pp. 273-324, 1997.

[82] D. McMillan and G.Ault, “Condition monitang benefit for onshore wind turbines

sensitivity to operational parameterRenewable Power Generatioviol. 2, No.
1, 2009, pp. 60-72.

www.manaraa.com



147

[83] “20% wind energy by 2030: increasing wimeggy’s contribution to U.S.

electricity supply,”United States Department of Enerédeport No. DOE/GO-
102008-2567, July 2008.

[84] “Strategic research agenda: market deployrsategy from 2008 to 2030,”
European Wind Energy Technology Platforhaly 2008. Available online:
http://www.windplatform.eu/fileadmin/ewetp docs/Bdmraphy/SRA_MDS_Jul
y_2008.pdf

[85] A. Kusiak, H.-Y. Zheng, and Z. Song, “OndiiMonitoring of Power Curves”,
Renewable Energy/ol. 34, No. 6, 2009, pp. 1487-1493.

www.manaraa.com



	Predictive engineering in wind energy: a data-mining approach
	Recommended Citation

	Microsoft Word - $ASQ32221_supp_65CAF38A-E356-11DE-AFD2-28419E1A67F9.docx

